Looks like the publisher may have taken this series offline or changed its URL. Please contact support if you believe it should be working, the feed URL is invalid, or you have any other concerns about it.
با برنامه Player FM !
پادکست هایی که ارزش شنیدن دارند
حمایت شده


AF - Finding Deception in Language Models by Esben Kran
بایگانی مجموعه ها ("فیدهای غیر فعال" status)
When? This feed was archived on October 23, 2024 10:10 (
Why? فیدهای غیر فعال status. سرورهای ما، برای یک دوره پایدار، قادر به بازیابی یک فید پادکست معتبر نبوده اند.
What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.
Manage episode 435389747 series 3337166
Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Finding Deception in Language Models, published by Esben Kran on August 20, 2024 on The AI Alignment Forum.
This June, Apart Research and Apollo Research joined forces to host the Deception Detection Hackathon. Bringing together students, researchers, and engineers from around the world to tackle a pressing challenge in AI safety; preventing AI from deceiving humans and overseers.
The hackathon took place both online and in multiple physical locations simultaneously. Marius Hobbhahn, the CEO of Apollo Research, kicked off the hackathon with a keynote talk about evaluating deception in AI with white-box and black-box methods. You can watch his talk
here. We also had talks by Jacob Haimes, an Apart fellow, and Mikita Balesni, a research scientist at Apollo Research.
This post details the top 8 projects, multiple of which are currently being developed further in Apart Lab. In total, we had 189 participants and 21 final entries.
Sandbagging Detection through Model Degradation
By Cam Tice, Philipp Alexander Kreer, Fedor Ryzhenkov, Nathan Helm-Burger, Prithviraj Singh Shahani
The team introduced a new approach to detect AI sandbagging, a form of deception where an AI model strategically underperforms during evaluation to hide its true capabilities. The assumption behind their project is that sandbagging is a more complex task than showing the true capabilities.
In the graph above, you can see how they gradually add noise to the model's parameters and evaluate the models during this process. Sandbagging models consistently improve in performance right before the noise level causes a normal model to lose the capability.
It is a straightforward, inexpensive technique that doesn't require prior assumptions about how sandbagging is represented within the model. They successfully detected sandbagging behavior in two open-source LLMs: An 8B Llama 3 Instruct model and Phi 3 small instruct model. This approach offers a practical and accessible method for identifying potential deception in AI systems.
Read the full project here.
Detecting and Controlling Deceptive Representation in LLMs with Representational Engineering
By Avyay M Casheekar, Kaushik Sanjay Prabhakar, Kanishk Rath, Sienka Dounia
The team focused on detecting and mitigating sandbagging in AI models using recent methods for understanding activations. They fine-tuned a Llama 3 8B model on a custom dataset of deceptive and honest scenarios, then used Linear Artificial Tomography (LAT) scans to detect deceptive behaviors in the internal representations of the LLM.
The team's technique not only identified deceptive behaviors, but also showed promise in mitigating them. Importantly, their approach demonstrated good generalization to out-of-distribution scenarios, suggesting its potential robustness in real-world applications.
Read the full project here.
Detecting Deception in GPT-3.5-turbo: A Metadata-Based Approach
By Siddharth Reddy Bakkireddy, Rakesh Reddy Bakkireddy
This team tackled the challenge of detecting deception in closed-source, black-box models like GPT-3.5-turbo. They investigated whether LLM API response metadata such as token count, response time, and tokens per second could be used to detect intentional deceptive behavior.
The team analyzed 300 prompts and generated 1,200 responses from GPT-3.5-turbo, comparing the metadata of baseline and deceptive outputs. Their results revealed that deceptive outputs tend to have increased response times and altered token usage. This approach demonstrates that deception detection is possible without accessing a model's internal representation, opening up new avenues for monitoring and safeguarding AI systems, even when their inner workings are not accessible.
Read the full project here.
Modelling the Oversight of Automated Interpretability Against Deceptive Agents on Sp...
392 قسمت
بایگانی مجموعه ها ("فیدهای غیر فعال" status)
When?
This feed was archived on October 23, 2024 10:10 (
Why? فیدهای غیر فعال status. سرورهای ما، برای یک دوره پایدار، قادر به بازیابی یک فید پادکست معتبر نبوده اند.
What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.
Manage episode 435389747 series 3337166
Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Finding Deception in Language Models, published by Esben Kran on August 20, 2024 on The AI Alignment Forum.
This June, Apart Research and Apollo Research joined forces to host the Deception Detection Hackathon. Bringing together students, researchers, and engineers from around the world to tackle a pressing challenge in AI safety; preventing AI from deceiving humans and overseers.
The hackathon took place both online and in multiple physical locations simultaneously. Marius Hobbhahn, the CEO of Apollo Research, kicked off the hackathon with a keynote talk about evaluating deception in AI with white-box and black-box methods. You can watch his talk
here. We also had talks by Jacob Haimes, an Apart fellow, and Mikita Balesni, a research scientist at Apollo Research.
This post details the top 8 projects, multiple of which are currently being developed further in Apart Lab. In total, we had 189 participants and 21 final entries.
Sandbagging Detection through Model Degradation
By Cam Tice, Philipp Alexander Kreer, Fedor Ryzhenkov, Nathan Helm-Burger, Prithviraj Singh Shahani
The team introduced a new approach to detect AI sandbagging, a form of deception where an AI model strategically underperforms during evaluation to hide its true capabilities. The assumption behind their project is that sandbagging is a more complex task than showing the true capabilities.
In the graph above, you can see how they gradually add noise to the model's parameters and evaluate the models during this process. Sandbagging models consistently improve in performance right before the noise level causes a normal model to lose the capability.
It is a straightforward, inexpensive technique that doesn't require prior assumptions about how sandbagging is represented within the model. They successfully detected sandbagging behavior in two open-source LLMs: An 8B Llama 3 Instruct model and Phi 3 small instruct model. This approach offers a practical and accessible method for identifying potential deception in AI systems.
Read the full project here.
Detecting and Controlling Deceptive Representation in LLMs with Representational Engineering
By Avyay M Casheekar, Kaushik Sanjay Prabhakar, Kanishk Rath, Sienka Dounia
The team focused on detecting and mitigating sandbagging in AI models using recent methods for understanding activations. They fine-tuned a Llama 3 8B model on a custom dataset of deceptive and honest scenarios, then used Linear Artificial Tomography (LAT) scans to detect deceptive behaviors in the internal representations of the LLM.
The team's technique not only identified deceptive behaviors, but also showed promise in mitigating them. Importantly, their approach demonstrated good generalization to out-of-distribution scenarios, suggesting its potential robustness in real-world applications.
Read the full project here.
Detecting Deception in GPT-3.5-turbo: A Metadata-Based Approach
By Siddharth Reddy Bakkireddy, Rakesh Reddy Bakkireddy
This team tackled the challenge of detecting deception in closed-source, black-box models like GPT-3.5-turbo. They investigated whether LLM API response metadata such as token count, response time, and tokens per second could be used to detect intentional deceptive behavior.
The team analyzed 300 prompts and generated 1,200 responses from GPT-3.5-turbo, comparing the metadata of baseline and deceptive outputs. Their results revealed that deceptive outputs tend to have increased response times and altered token usage. This approach demonstrates that deception detection is possible without accessing a model's internal representation, opening up new avenues for monitoring and safeguarding AI systems, even when their inner workings are not accessible.
Read the full project here.
Modelling the Oversight of Automated Interpretability Against Deceptive Agents on Sp...
392 قسمت
همه قسمت ها
×
1 AF - The Obliqueness Thesis by Jessica Taylor 30:04

1 AF - Secret Collusion: Will We Know When to Unplug AI? by schroederdewitt 57:38

1 AF - Estimating Tail Risk in Neural Networks by Jacob Hilton 41:11

1 AF - Can startups be impactful in AI safety? by Esben Kran 11:54

1 AF - How difficult is AI Alignment? by Samuel Dylan Martin 39:38

1 AF - Contra papers claiming superhuman AI forecasting by nikos 14:36

1 AF - AI forecasting bots incoming by Dan H 7:53

1 AF - Backdoors as an analogy for deceptive alignment by Jacob Hilton 14:45

1 AF - Conflating value alignment and intent alignment is causing confusion by Seth Herd 13:40

1 AF - Is there any rigorous work on using anthropic uncertainty to prevent situational awareness / deception? by David Scott Krueger 1:01

1 AF - The Checklist: What Succeeding at AI Safety Will Involve by Sam Bowman 35:25

1 AF - Survey: How Do Elite Chinese Students Feel About the Risks of AI? by Nick Corvino 19:38

1 AF - Can a Bayesian Oracle Prevent Harm from an Agent? (Bengio et al. 2024) by Matt MacDermott 8:04

1 AF - Epistemic states as a potential benign prior by Tamsin Leake 13:38

1 AF - AIS terminology proposal: standardize terms for probability ranges by Egg Syntax 5:24

1 AF - Extracting SAE task features for ICL by Dmitrii Kharlapenko 17:20

1 AF - In Defense of Open-Minded UDT by Abram Demski 23:26

1 AF - You can remove GPT2's LayerNorm by fine-tuning for an hour by Stefan Heimersheim 19:03

1 AF - Inference-Only Debate Experiments Using Math Problems by Arjun Panickssery 4:41

1 AF - Self-explaining SAE features by Dmitrii Kharlapenko 19:36

1 AF - The Bitter Lesson for AI Safety Research by Adam Khoja 6:33

1 AF - A Simple Toy Coherence Theorem by johnswentworth 11:59

1 AF - The 'strong' feature hypothesis could be wrong by lewis smith 31:14

1 AF - The need for multi-agent experiments by Martín Soto 17:17

1 AF - Against AI As An Existential Risk by Noah Birnbaum 0:44

1 AF - Self-Other Overlap: A Neglected Approach to AI Alignment by Marc Carauleanu 19:29

1 AF - Investigating the Ability of LLMs to Recognize Their Own Writing by Christopher Ackerman 23:09

1 AF - Can Generalized Adversarial Testing Enable More Rigorous LLM Safety Evals? by Stephen Casper 8:19

1 AF - AXRP Episode 34 - AI Evaluations with Beth Barnes by DanielFilan 1:37:11

1 AF - A Solomonoff Inductor Walks Into a Bar: Schelling Points for Communication by johnswentworth 35:18
به Player FM خوش آمدید!
Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.