Looks like the publisher may have taken this series offline or changed its URL. Please contact support if you believe it should be working, the feed URL is invalid, or you have any other concerns about it.
با برنامه Player FM !
پادکست هایی که ارزش شنیدن دارند
حمایت شده


AF - Measuring Structure Development in Algorithmic Transformers by Jasmina Nasufi
بایگانی مجموعه ها ("فیدهای غیر فعال" status)
When? This feed was archived on October 23, 2024 10:10 (
Why? فیدهای غیر فعال status. سرورهای ما، برای یک دوره پایدار، قادر به بازیابی یک فید پادکست معتبر نبوده اند.
What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.
Manage episode 435842406 series 3337166
Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Measuring Structure Development in Algorithmic Transformers, published by Jasmina Nasufi on August 22, 2024 on The AI Alignment Forum.
tl;dr: We compute the evolution of the local learning coefficient (LLC), a proxy for model complexity, for an algorithmic transformer. The LLC decreases as the model learns more structured solutions, such as head specialization.
This post is structured in three main parts, (1) a summary, giving an overview of the main results, (2) the Fine Print, that delves into various cross-checks and details and (3) Discussion and Conclusions.
Structure Formation in Algorithmic Transformers
In this work we study the development of simple algorithmic transformers, which are transformers that learn to perform algorithmic tasks. A major advantage of this setup is that we can control several (hyper)parameters, such as the complexity of the training data and network architecture. This allows us to do targeted experiments studying the impacts of these parameters on the learning dynamics.
The main tool we use to study the development is the Local Learning Coefficient (LLC) and we choose cases where we have a reverse-engineered solution.
Why use the LLC for this purpose? It is a theoretically well motivated measure of model complexity defined by Lau et.al. For an overview of Singular Learning Theory (which serves as the theoretical foundation for the LLC) see Liam Carol's Distilling SLT sequence. For a brief overview of the LLC see e.g. this post.
We use the same setup as CallumMcDougall's October Monthly Algorithmic Mech-Interp Challenge. The model is an attention only transformer, trained on sorting numbers with layer norm and weight decay on a cross-entropy loss function using the Adam optimizer. The residual stream size is 96 and the head dimension is 48. It is trained on sequences of the form
and to predict the next token starting at the separation token. The numbers in the list are sampled uniformly from 0 to 50, which together with the separation token produce a vocabulary of 52 tokens. Numbers do not repeat in the list. The images making up the gifs can be found here.
1-Head Model
Let's first look at the case of a 1-head transformer:
The model reaches 100% accuracy around training step 100, confirming that a single attention head is sufficient for sorting, as noted in previous work. Once maximum accuracy is reached, the full QK and OV circuits[2] behave as described by Callum for the 2-head model:
In the QK circuit, source tokens attend more to the smallest token in the list larger than themselves. This results in a higher value band above the diagonal and a lower value band below the diagonal.
The OV circuit copies tokens, as seen by the clear positive diagonal pattern.
In addition, we observe a transition around training step 1000, where the LLC decreases while the accuracy stays unchanged. This is supported by a drop in the sum of the ranks[3] of the matrices in the heat maps.
It also coincides with the formation of the off-diagonal stripes in the OV-circuit. We speculate that these are simpler than the noisier off-diagonal OV pattern observed at peak LLC, and correspond to the translational symmetry of the problem. We define a Translational Symmetry measure[1] (see purple line in the plot) to capture the degree to which the circuits obey this symmetry. It increases throughout most of the training, even after the other measures stabilize.
2-Head Model
Let's now turn our attention to the 2-head transformer in Callum's original setup.
We see a lot of qualitative similarities to the evolution of the full QK and OV circuits for the 1-head model. As the LLC begins to drop (around training step 1000), we note the following:
QK circuit: Slight changes[5] to the attention pattern, which crystallize into triangular regions late in the training, long aft...
392 قسمت
بایگانی مجموعه ها ("فیدهای غیر فعال" status)
When?
This feed was archived on October 23, 2024 10:10 (
Why? فیدهای غیر فعال status. سرورهای ما، برای یک دوره پایدار، قادر به بازیابی یک فید پادکست معتبر نبوده اند.
What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.
Manage episode 435842406 series 3337166
Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Measuring Structure Development in Algorithmic Transformers, published by Jasmina Nasufi on August 22, 2024 on The AI Alignment Forum.
tl;dr: We compute the evolution of the local learning coefficient (LLC), a proxy for model complexity, for an algorithmic transformer. The LLC decreases as the model learns more structured solutions, such as head specialization.
This post is structured in three main parts, (1) a summary, giving an overview of the main results, (2) the Fine Print, that delves into various cross-checks and details and (3) Discussion and Conclusions.
Structure Formation in Algorithmic Transformers
In this work we study the development of simple algorithmic transformers, which are transformers that learn to perform algorithmic tasks. A major advantage of this setup is that we can control several (hyper)parameters, such as the complexity of the training data and network architecture. This allows us to do targeted experiments studying the impacts of these parameters on the learning dynamics.
The main tool we use to study the development is the Local Learning Coefficient (LLC) and we choose cases where we have a reverse-engineered solution.
Why use the LLC for this purpose? It is a theoretically well motivated measure of model complexity defined by Lau et.al. For an overview of Singular Learning Theory (which serves as the theoretical foundation for the LLC) see Liam Carol's Distilling SLT sequence. For a brief overview of the LLC see e.g. this post.
We use the same setup as CallumMcDougall's October Monthly Algorithmic Mech-Interp Challenge. The model is an attention only transformer, trained on sorting numbers with layer norm and weight decay on a cross-entropy loss function using the Adam optimizer. The residual stream size is 96 and the head dimension is 48. It is trained on sequences of the form
and to predict the next token starting at the separation token. The numbers in the list are sampled uniformly from 0 to 50, which together with the separation token produce a vocabulary of 52 tokens. Numbers do not repeat in the list. The images making up the gifs can be found here.
1-Head Model
Let's first look at the case of a 1-head transformer:
The model reaches 100% accuracy around training step 100, confirming that a single attention head is sufficient for sorting, as noted in previous work. Once maximum accuracy is reached, the full QK and OV circuits[2] behave as described by Callum for the 2-head model:
In the QK circuit, source tokens attend more to the smallest token in the list larger than themselves. This results in a higher value band above the diagonal and a lower value band below the diagonal.
The OV circuit copies tokens, as seen by the clear positive diagonal pattern.
In addition, we observe a transition around training step 1000, where the LLC decreases while the accuracy stays unchanged. This is supported by a drop in the sum of the ranks[3] of the matrices in the heat maps.
It also coincides with the formation of the off-diagonal stripes in the OV-circuit. We speculate that these are simpler than the noisier off-diagonal OV pattern observed at peak LLC, and correspond to the translational symmetry of the problem. We define a Translational Symmetry measure[1] (see purple line in the plot) to capture the degree to which the circuits obey this symmetry. It increases throughout most of the training, even after the other measures stabilize.
2-Head Model
Let's now turn our attention to the 2-head transformer in Callum's original setup.
We see a lot of qualitative similarities to the evolution of the full QK and OV circuits for the 1-head model. As the LLC begins to drop (around training step 1000), we note the following:
QK circuit: Slight changes[5] to the attention pattern, which crystallize into triangular regions late in the training, long aft...
392 قسمت
همه قسمت ها
×
1 AF - The Obliqueness Thesis by Jessica Taylor 30:04

1 AF - Secret Collusion: Will We Know When to Unplug AI? by schroederdewitt 57:38

1 AF - Estimating Tail Risk in Neural Networks by Jacob Hilton 41:11

1 AF - Can startups be impactful in AI safety? by Esben Kran 11:54

1 AF - How difficult is AI Alignment? by Samuel Dylan Martin 39:38

1 AF - Contra papers claiming superhuman AI forecasting by nikos 14:36

1 AF - AI forecasting bots incoming by Dan H 7:53

1 AF - Backdoors as an analogy for deceptive alignment by Jacob Hilton 14:45

1 AF - Conflating value alignment and intent alignment is causing confusion by Seth Herd 13:40

1 AF - Is there any rigorous work on using anthropic uncertainty to prevent situational awareness / deception? by David Scott Krueger 1:01

1 AF - The Checklist: What Succeeding at AI Safety Will Involve by Sam Bowman 35:25

1 AF - Survey: How Do Elite Chinese Students Feel About the Risks of AI? by Nick Corvino 19:38

1 AF - Can a Bayesian Oracle Prevent Harm from an Agent? (Bengio et al. 2024) by Matt MacDermott 8:04

1 AF - Epistemic states as a potential benign prior by Tamsin Leake 13:38

1 AF - AIS terminology proposal: standardize terms for probability ranges by Egg Syntax 5:24

1 AF - Solving adversarial attacks in computer vision as a baby version of general AI alignment by stanislavfort 12:34

1 AF - Would catching your AIs trying to escape convince AI developers to slow down or undeploy? by Buck Shlegeris 5:55

1 AF - Owain Evans on Situational Awareness and Out-of-Context Reasoning in LLMs by Michaël Trazzi 8:33

1 AF - Showing SAE Latents Are Not Atomic Using Meta-SAEs by Bart Bussmann 35:53

1 AF - Invitation to lead a project at AI Safety Camp (Virtual Edition, 2025) by Linda Linsefors 7:27

1 AF - Interoperable High Level Structures: Early Thoughts on Adjectives by johnswentworth 12:28

1 AF - A Robust Natural Latent Over A Mixed Distribution Is Natural Over The Distributions Which Were Mixed by johnswentworth 8:37

1 AF - Measuring Structure Development in Algorithmic Transformers by Jasmina Nasufi 18:17

1 AF - AGI Safety and Alignment at Google DeepMind: A Summary of Recent Work by Rohin Shah 16:31

1 AF - Finding Deception in Language Models by Esben Kran 7:36

1 AF - Limitations on Formal Verification for AI Safety by Andrew Dickson 37:37

1 AF - Clarifying alignment vs capabilities by Richard Ngo 13:26

1 AF - Untrustworthy models: a frame for scheming evaluations by Olli Järviniemi 15:38

1 AF - Calendar feature geometry in GPT-2 layer 8 residual stream SAEs by Patrick Leask 7:17

1 AF - Fields that I reference when thinking about AI takeover prevention by Buck Shlegeris 17:03
به Player FM خوش آمدید!
Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.