Looks like the publisher may have taken this series offline or changed its URL. Please contact support if you believe it should be working, the feed URL is invalid, or you have any other concerns about it.
با برنامه Player FM !
پادکست هایی که ارزش شنیدن دارند
حمایت شده


AF - An Extremely Opinionated Annotated List of My Favourite Mechanistic Interpretability Papers v2 by Neel Nanda
بایگانی مجموعه ها ("فیدهای غیر فعال" status)
When? This feed was archived on October 23, 2024 10:10 (
Why? فیدهای غیر فعال status. سرورهای ما، برای یک دوره پایدار، قادر به بازیابی یک فید پادکست معتبر نبوده اند.
What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.
Manage episode 427832066 series 3337166
Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: An Extremely Opinionated Annotated List of My Favourite Mechanistic Interpretability Papers v2, published by Neel Nanda on July 7, 2024 on The AI Alignment Forum.
This post represents my personal hot takes, not the opinions of my team or employer. This is a massively updated version of a similar list I made two years ago
There's a lot of mechanistic interpretability papers, and more come out all the time. This can be pretty intimidating if you're new to the field! To try helping out, here's a reading list of my favourite mech interp papers: papers which I think are important to be aware of, often worth skimming, and something worth reading deeply (time permitting). I've annotated these with my key takeaways, what I like about each paper, which bits to deeply engage with vs skim, etc. I wrote
a similar post 2 years ago, but a lot has changed since then, thus v2!
Note that this is not trying to be a comprehensive literature review - this is my answer to "if you have limited time and want to get up to speed on the field as fast as you can, what should you do". I'm deliberately not following academic norms like necessarily citing the first paper introducing something, or all papers doing some work, and am massively biased towards recent work that is more relevant to the cutting edge. I also shamelessly recommend a bunch of my own work here, sorry!
How to read this post: I've bolded the most important papers to read, which I recommend prioritising. All of the papers are annotated with my interpretation and key takeaways, and tbh I think reading that may be comparable good to skimming the paper. And there's far too many papers to read all of them deeply unless you want to make that a significant priority. I recommend reading all my summaries, noting the papers and areas that excite you, and then trying to dive deeply into those.
Foundational Work
A Mathematical Framework for Transformer Circuits (Nelson Elhage et al, Anthropic) - absolute classic, foundational ideas for how to think about transformers (see my blog post for what to skip). See my
youtube tutorial (I hear this is best watched after reading the paper, and adds additional clarity)
Deeply engage with:
All the ideas in the overview section, especially:
Understanding the residual stream and why it's fundamental.
The notion of interpreting paths between interpretable bits (eg input tokens and output logits) where the path is a composition of matrices and how this is different from interpreting every intermediate activations
And understanding attention heads: what a QK and OV matrix is, how attention heads are independent and additive and how attention and OV are semi-independent.
Skip Trigrams & Skip Trigram bugs, esp understanding why these are a really easy thing to do with attention, and how the bugs are inherent to attention heads separating where to attend to (QK) and what to do once you attend somewhere (OV)
Induction heads, esp why this is K-Composition (and how that's different from Q & V composition), how the circuit works mechanistically, and why this is too hard to do in a 1L model
Skim or skip:
Eigenvalues or tensor products. They have the worst effort per unit insight of the paper and aren't very important.
Superposition
Superposition is a core principle/problem in model internals. For any given activation (eg the output of MLP13), we believe that there's a massive dictionary of concepts/features the model knows of. Each feature has a corresponding vector, and model activations are a sparse linear combination of these meaningful feature vectors.
Further, there are more features in the dictionary than activation dimensions, and they are thus compressed in and interfere with each other, essentially causing cascading errors. This phenomena of compression is called superposition.
Toy models of superpositio...
392 قسمت
بایگانی مجموعه ها ("فیدهای غیر فعال" status)
When?
This feed was archived on October 23, 2024 10:10 (
Why? فیدهای غیر فعال status. سرورهای ما، برای یک دوره پایدار، قادر به بازیابی یک فید پادکست معتبر نبوده اند.
What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.
Manage episode 427832066 series 3337166
Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: An Extremely Opinionated Annotated List of My Favourite Mechanistic Interpretability Papers v2, published by Neel Nanda on July 7, 2024 on The AI Alignment Forum.
This post represents my personal hot takes, not the opinions of my team or employer. This is a massively updated version of a similar list I made two years ago
There's a lot of mechanistic interpretability papers, and more come out all the time. This can be pretty intimidating if you're new to the field! To try helping out, here's a reading list of my favourite mech interp papers: papers which I think are important to be aware of, often worth skimming, and something worth reading deeply (time permitting). I've annotated these with my key takeaways, what I like about each paper, which bits to deeply engage with vs skim, etc. I wrote
a similar post 2 years ago, but a lot has changed since then, thus v2!
Note that this is not trying to be a comprehensive literature review - this is my answer to "if you have limited time and want to get up to speed on the field as fast as you can, what should you do". I'm deliberately not following academic norms like necessarily citing the first paper introducing something, or all papers doing some work, and am massively biased towards recent work that is more relevant to the cutting edge. I also shamelessly recommend a bunch of my own work here, sorry!
How to read this post: I've bolded the most important papers to read, which I recommend prioritising. All of the papers are annotated with my interpretation and key takeaways, and tbh I think reading that may be comparable good to skimming the paper. And there's far too many papers to read all of them deeply unless you want to make that a significant priority. I recommend reading all my summaries, noting the papers and areas that excite you, and then trying to dive deeply into those.
Foundational Work
A Mathematical Framework for Transformer Circuits (Nelson Elhage et al, Anthropic) - absolute classic, foundational ideas for how to think about transformers (see my blog post for what to skip). See my
youtube tutorial (I hear this is best watched after reading the paper, and adds additional clarity)
Deeply engage with:
All the ideas in the overview section, especially:
Understanding the residual stream and why it's fundamental.
The notion of interpreting paths between interpretable bits (eg input tokens and output logits) where the path is a composition of matrices and how this is different from interpreting every intermediate activations
And understanding attention heads: what a QK and OV matrix is, how attention heads are independent and additive and how attention and OV are semi-independent.
Skip Trigrams & Skip Trigram bugs, esp understanding why these are a really easy thing to do with attention, and how the bugs are inherent to attention heads separating where to attend to (QK) and what to do once you attend somewhere (OV)
Induction heads, esp why this is K-Composition (and how that's different from Q & V composition), how the circuit works mechanistically, and why this is too hard to do in a 1L model
Skim or skip:
Eigenvalues or tensor products. They have the worst effort per unit insight of the paper and aren't very important.
Superposition
Superposition is a core principle/problem in model internals. For any given activation (eg the output of MLP13), we believe that there's a massive dictionary of concepts/features the model knows of. Each feature has a corresponding vector, and model activations are a sparse linear combination of these meaningful feature vectors.
Further, there are more features in the dictionary than activation dimensions, and they are thus compressed in and interfere with each other, essentially causing cascading errors. This phenomena of compression is called superposition.
Toy models of superpositio...
392 قسمت
همه قسمت ها
×
1 AF - The Obliqueness Thesis by Jessica Taylor 30:04

1 AF - Secret Collusion: Will We Know When to Unplug AI? by schroederdewitt 57:38

1 AF - Estimating Tail Risk in Neural Networks by Jacob Hilton 41:11

1 AF - Can startups be impactful in AI safety? by Esben Kran 11:54

1 AF - How difficult is AI Alignment? by Samuel Dylan Martin 39:38

1 AF - Contra papers claiming superhuman AI forecasting by nikos 14:36

1 AF - AI forecasting bots incoming by Dan H 7:53

1 AF - Backdoors as an analogy for deceptive alignment by Jacob Hilton 14:45

1 AF - Conflating value alignment and intent alignment is causing confusion by Seth Herd 13:40

1 AF - Is there any rigorous work on using anthropic uncertainty to prevent situational awareness / deception? by David Scott Krueger 1:01

1 AF - The Checklist: What Succeeding at AI Safety Will Involve by Sam Bowman 35:25

1 AF - Survey: How Do Elite Chinese Students Feel About the Risks of AI? by Nick Corvino 19:38

1 AF - Can a Bayesian Oracle Prevent Harm from an Agent? (Bengio et al. 2024) by Matt MacDermott 8:04

1 AF - Epistemic states as a potential benign prior by Tamsin Leake 13:38

1 AF - AIS terminology proposal: standardize terms for probability ranges by Egg Syntax 5:24
به Player FM خوش آمدید!
Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.