Looks like the publisher may have taken this series offline or changed its URL. Please contact support if you believe it should be working, the feed URL is invalid, or you have any other concerns about it.
با برنامه Player FM !
پادکست هایی که ارزش شنیدن دارند
حمایت شده
AF - Does robustness improve with scale? by ChengCheng
بایگانی مجموعه ها ("فیدهای غیر فعال" status)
When? This feed was archived on October 23, 2024 10:10 (
Why? فیدهای غیر فعال status. سرورهای ما، برای یک دوره پایدار، قادر به بازیابی یک فید پادکست معتبر نبوده اند.
What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.
Manage episode 430761157 series 3337166
Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Does robustness improve with scale?, published by ChengCheng on July 25, 2024 on The AI Alignment Forum.
Adversarial vulnerabilities have long been an issue in various ML systems. Large language models (LLMs) are no exception, suffering from issues such as jailbreaks: adversarial prompts that bypass model safeguards. At the same time, scale has led to remarkable advances in the capabilities of LLMs, leading us to ask: to what extent can scale help solve robustness? In this post, we explore this question in the classification setting: predicting the binary label of a text input.
We find that scale alone does little to improve model robustness, but that larger models benefit more from defenses such as adversarial training than do smaller models.
We study models in the classification setting as there is a clear notion of "correct behavior": does the model output the right label? We can then naturally define robustness as the proportion of the attacked dataset that the model correctly classifies. We evaluate models on tasks such as spam detection and movie sentiment classification.
We adapt pretrained foundation models for classification by replacing the generative model's unembedding layer with a randomly initialized classification head, and then fine-tune the models on each task.
We focus on adversarial-suffix style attacks: appending an adversarially chosen prompt to a benign prompt in an attempt to cause the model to misclassify the input, e.g., classify a spam email as not-spam. We consider two attacks: the state-of-the-art Greedy Coordinate Gradient method (Zou et al., 2023), and a baseline random token attack. This simple threat model has the advantage of being unlikely to change the semantics of the input.
For example, a spam email is still spam even if a handful of tokens are appended to it. Of course, attackers are not limited to such a simple threat model: studying more open-ended threat models (such as rephrasing the prompt, or replacing words with synonyms) and corresponding attack methods (such as LLM generated adversarial prompts) is an important direction that we hope to pursue soon in future work.
For more information, see our blog post or paper.
Thanks for listening. To help us out with The Nonlinear Library or to learn more, please visit nonlinear.org.
392 قسمت
بایگانی مجموعه ها ("فیدهای غیر فعال" status)
When?
This feed was archived on October 23, 2024 10:10 (
Why? فیدهای غیر فعال status. سرورهای ما، برای یک دوره پایدار، قادر به بازیابی یک فید پادکست معتبر نبوده اند.
What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.
Manage episode 430761157 series 3337166
Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Does robustness improve with scale?, published by ChengCheng on July 25, 2024 on The AI Alignment Forum.
Adversarial vulnerabilities have long been an issue in various ML systems. Large language models (LLMs) are no exception, suffering from issues such as jailbreaks: adversarial prompts that bypass model safeguards. At the same time, scale has led to remarkable advances in the capabilities of LLMs, leading us to ask: to what extent can scale help solve robustness? In this post, we explore this question in the classification setting: predicting the binary label of a text input.
We find that scale alone does little to improve model robustness, but that larger models benefit more from defenses such as adversarial training than do smaller models.
We study models in the classification setting as there is a clear notion of "correct behavior": does the model output the right label? We can then naturally define robustness as the proportion of the attacked dataset that the model correctly classifies. We evaluate models on tasks such as spam detection and movie sentiment classification.
We adapt pretrained foundation models for classification by replacing the generative model's unembedding layer with a randomly initialized classification head, and then fine-tune the models on each task.
We focus on adversarial-suffix style attacks: appending an adversarially chosen prompt to a benign prompt in an attempt to cause the model to misclassify the input, e.g., classify a spam email as not-spam. We consider two attacks: the state-of-the-art Greedy Coordinate Gradient method (Zou et al., 2023), and a baseline random token attack. This simple threat model has the advantage of being unlikely to change the semantics of the input.
For example, a spam email is still spam even if a handful of tokens are appended to it. Of course, attackers are not limited to such a simple threat model: studying more open-ended threat models (such as rephrasing the prompt, or replacing words with synonyms) and corresponding attack methods (such as LLM generated adversarial prompts) is an important direction that we hope to pursue soon in future work.
For more information, see our blog post or paper.
Thanks for listening. To help us out with The Nonlinear Library or to learn more, please visit nonlinear.org.
392 قسمت
همه قسمت ها
×
1 AF - The Obliqueness Thesis by Jessica Taylor 30:04

1 AF - Secret Collusion: Will We Know When to Unplug AI? by schroederdewitt 57:38

1 AF - Estimating Tail Risk in Neural Networks by Jacob Hilton 41:11

1 AF - Can startups be impactful in AI safety? by Esben Kran 11:54

1 AF - How difficult is AI Alignment? by Samuel Dylan Martin 39:38

1 AF - Contra papers claiming superhuman AI forecasting by nikos 14:36

1 AF - AI forecasting bots incoming by Dan H 7:53

1 AF - Backdoors as an analogy for deceptive alignment by Jacob Hilton 14:45

1 AF - Conflating value alignment and intent alignment is causing confusion by Seth Herd 13:40

1 AF - Is there any rigorous work on using anthropic uncertainty to prevent situational awareness / deception? by David Scott Krueger 1:01

1 AF - The Checklist: What Succeeding at AI Safety Will Involve by Sam Bowman 35:25

1 AF - Survey: How Do Elite Chinese Students Feel About the Risks of AI? by Nick Corvino 19:38

1 AF - Can a Bayesian Oracle Prevent Harm from an Agent? (Bengio et al. 2024) by Matt MacDermott 8:04

1 AF - Epistemic states as a potential benign prior by Tamsin Leake 13:38

1 AF - AIS terminology proposal: standardize terms for probability ranges by Egg Syntax 5:24
به Player FM خوش آمدید!
Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.