Looks like the publisher may have taken this series offline or changed its URL. Please contact support if you believe it should be working, the feed URL is invalid, or you have any other concerns about it.
با برنامه Player FM !
AF - The 'strong' feature hypothesis could be wrong by lewis smith
بایگانی مجموعه ها ("فیدهای غیر فعال" status)
When? This feed was archived on October 23, 2024 10:10 (
Why? فیدهای غیر فعال status. سرورهای ما، برای یک دوره پایدار، قادر به بازیابی یک فید پادکست معتبر نبوده اند.
What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.
Manage episode 433023386 series 3337166
Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: The 'strong' feature hypothesis could be wrong, published by lewis smith on August 2, 2024 on The AI Alignment Forum.
NB. I am on the Google Deepmind language model interpretability team. But the arguments/views in this post are my own, and shouldn't be read as a team position.
"It would be very convenient if the individual neurons of artificial neural networks corresponded to cleanly interpretable features of the input. For example, in an "ideal" ImageNet classifier, each neuron would fire only in the presence of a specific visual feature, such as the color red, a left-facing curve, or a dog snout"
Elhage et. al, Toy Models of Superposition
Recently, much attention in the field of mechanistic interpretability, which tries to explain the behavior of neural networks in terms of interactions between lower level components, has been focussed on extracting features from the representation space of a model. The predominant methodology for this has used variations on the sparse autoencoder, in a series of papers inspired by Elhage et. als.
model of superposition.It's been conventionally understood that there are two key theories underlying this agenda. The first is the 'linear representation hypothesis' (LRH), the hypothesis that neural networks represent many intermediates or variables of the computation (such as the 'features of the input' in the opening quote) as linear directions in it's representation space, or atoms[1].
And second, the theory that the network is capable of representing more of these 'atoms' than it has dimensions in its representation space, via superposition (the superposition hypothesis).
While superposition is a relatively uncomplicated hypothesis, I think the LRH is worth examining in more detail. It is frequently stated quite vaguely, and I think there are several possible formulations of this hypothesis, with varying degrees of plausibility, that it is worth carefully distinguishing between. For example, the linear representation hypothesis is often stated as 'networks represent features of the input as directions in representation space'.
Here are two importantly different ways to parse this:
1. (Weak LRH) some or many features used by neural networks are represented as atoms in representation space
2. (Strong LRH) all (or the vast majority of) features used by neural networks are represented by atoms.
The weak LRH I would say is now well supported by considerable empirical evidence. The strong form is much more speculative: confirming the existence of many linear representations does not necessarily provide strong evidence for the strong hypothesis.
Both the weak and the strong forms of the hypothesis can still have considerable variation, depending on what we understand by a feature and the proportion of the model we expect to yield to analysis, but I think that the distinction between just a weak and strong form is clear enough to work with.
I think that in addition to the acknowledged assumption of the LRH and superposition hypotheses, much work on SAEs in practice makes the assumption that each atom in the network will represent a "simple feature" or a "feature of the input". These features that the atoms are representations of are assumed to be 'monosemantic': they will all stand for features which are human interpretable in isolation. I will call this the monosemanticity assumption.
This is difficult to state precisely, but we might formulate it as the theory that every represented variable will have a single meaning in a good description of a model. This is not a straightforward assumption due to how imprecise the notion of a single meaning is. While various more or less reasonable definitions for features are discussed in the pioneering work of Elhage, these assumptions have different implications.
For instance, if one thinks of 'feat...
392 قسمت
بایگانی مجموعه ها ("فیدهای غیر فعال" status)
When?
This feed was archived on October 23, 2024 10:10 (
Why? فیدهای غیر فعال status. سرورهای ما، برای یک دوره پایدار، قادر به بازیابی یک فید پادکست معتبر نبوده اند.
What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.
Manage episode 433023386 series 3337166
Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: The 'strong' feature hypothesis could be wrong, published by lewis smith on August 2, 2024 on The AI Alignment Forum.
NB. I am on the Google Deepmind language model interpretability team. But the arguments/views in this post are my own, and shouldn't be read as a team position.
"It would be very convenient if the individual neurons of artificial neural networks corresponded to cleanly interpretable features of the input. For example, in an "ideal" ImageNet classifier, each neuron would fire only in the presence of a specific visual feature, such as the color red, a left-facing curve, or a dog snout"
Elhage et. al, Toy Models of Superposition
Recently, much attention in the field of mechanistic interpretability, which tries to explain the behavior of neural networks in terms of interactions between lower level components, has been focussed on extracting features from the representation space of a model. The predominant methodology for this has used variations on the sparse autoencoder, in a series of papers inspired by Elhage et. als.
model of superposition.It's been conventionally understood that there are two key theories underlying this agenda. The first is the 'linear representation hypothesis' (LRH), the hypothesis that neural networks represent many intermediates or variables of the computation (such as the 'features of the input' in the opening quote) as linear directions in it's representation space, or atoms[1].
And second, the theory that the network is capable of representing more of these 'atoms' than it has dimensions in its representation space, via superposition (the superposition hypothesis).
While superposition is a relatively uncomplicated hypothesis, I think the LRH is worth examining in more detail. It is frequently stated quite vaguely, and I think there are several possible formulations of this hypothesis, with varying degrees of plausibility, that it is worth carefully distinguishing between. For example, the linear representation hypothesis is often stated as 'networks represent features of the input as directions in representation space'.
Here are two importantly different ways to parse this:
1. (Weak LRH) some or many features used by neural networks are represented as atoms in representation space
2. (Strong LRH) all (or the vast majority of) features used by neural networks are represented by atoms.
The weak LRH I would say is now well supported by considerable empirical evidence. The strong form is much more speculative: confirming the existence of many linear representations does not necessarily provide strong evidence for the strong hypothesis.
Both the weak and the strong forms of the hypothesis can still have considerable variation, depending on what we understand by a feature and the proportion of the model we expect to yield to analysis, but I think that the distinction between just a weak and strong form is clear enough to work with.
I think that in addition to the acknowledged assumption of the LRH and superposition hypotheses, much work on SAEs in practice makes the assumption that each atom in the network will represent a "simple feature" or a "feature of the input". These features that the atoms are representations of are assumed to be 'monosemantic': they will all stand for features which are human interpretable in isolation. I will call this the monosemanticity assumption.
This is difficult to state precisely, but we might formulate it as the theory that every represented variable will have a single meaning in a good description of a model. This is not a straightforward assumption due to how imprecise the notion of a single meaning is. While various more or less reasonable definitions for features are discussed in the pioneering work of Elhage, these assumptions have different implications.
For instance, if one thinks of 'feat...
392 قسمت
همه قسمت ها
×
1 AF - The Obliqueness Thesis by Jessica Taylor 30:04

1 AF - Secret Collusion: Will We Know When to Unplug AI? by schroederdewitt 57:38

1 AF - Estimating Tail Risk in Neural Networks by Jacob Hilton 41:11

1 AF - Can startups be impactful in AI safety? by Esben Kran 11:54

1 AF - How difficult is AI Alignment? by Samuel Dylan Martin 39:38

1 AF - Contra papers claiming superhuman AI forecasting by nikos 14:36

1 AF - AI forecasting bots incoming by Dan H 7:53

1 AF - Backdoors as an analogy for deceptive alignment by Jacob Hilton 14:45

1 AF - Conflating value alignment and intent alignment is causing confusion by Seth Herd 13:40

1 AF - Is there any rigorous work on using anthropic uncertainty to prevent situational awareness / deception? by David Scott Krueger 1:01

1 AF - The Checklist: What Succeeding at AI Safety Will Involve by Sam Bowman 35:25

1 AF - Survey: How Do Elite Chinese Students Feel About the Risks of AI? by Nick Corvino 19:38

1 AF - Can a Bayesian Oracle Prevent Harm from an Agent? (Bengio et al. 2024) by Matt MacDermott 8:04

1 AF - Epistemic states as a potential benign prior by Tamsin Leake 13:38

1 AF - AIS terminology proposal: standardize terms for probability ranges by Egg Syntax 5:24
به Player FM خوش آمدید!
Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.