Artwork

محتوای ارائه شده توسط Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka®. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka® یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

Optimizing Cloud-Native Apache Kafka Performance ft. Alok Nikhil and Adithya Chandra

30:40
 
اشتراک گذاری
 

Manage episode 424666773 series 2510642
محتوای ارائه شده توسط Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka®. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka® یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Maximizing cloud Apache Kafka® performance isn’t just about running data processes on cloud instances. There is a lot of engineering work required to set and maintain a high-performance standard for speed and availability.

Alok Nikhil (Senior Software Engineer, Confluent) and Adithya Chandra (Staff Software Engineer II, Confluent) share about their efforts on how to optimize Kafka on Confluent Cloud and the three guiding principles that they follow whether you are self-managing Kafka or working on a cloud-native system:

  1. Know your users and plan for their workloads
  2. Infrastructure matters for performance as well as cost efficiency
  3. Effective observability—you can’t improve what you don’t see

A large part of setting and achieving performance standards is about understanding that workloads vary and come with unique requirements. There are different dimensions for performance, such as the number of partitions and the number of connections. Alok and Adithya suggest starting by identifying the workload patterns that are the most important to your business objectives for simulation, reproduction, and using the results to optimize the software.

When identifying workloads, it’s essential to determine the infrastructure that you’ll need to support the given workload economically. Infrastructure optimization is as important as performance optimization. It's best practice to know the infrastructure that you have available to you and choose the appropriate hardware, operating system, and JVM to allocate the processes so that workloads run efficiently.

With the necessary infrastructure patterns in place, it’s crucial to monitor metrics to ensure that your application is running as expected consistently with every release. Having the right observability metrics and logs allows you to identify and troubleshoot issues relatively quickly. Profiling and request sampling also help you dive deeper into performance issues, particularly, during incidents. Alok and Adithya’s team uses tooling such as the async-profiler for profiling CPU cycles, heap allocations, and lock contention.

Alok and Adithya summarize their learnings and processes used for optimizing managed Kafka as a service, which can be applicable to your own cloud-native applications. You can also read more about their journey on the Confluent blog.

EPISODE LINKS

  continue reading

265 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 424666773 series 2510642
محتوای ارائه شده توسط Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka®. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka® یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Maximizing cloud Apache Kafka® performance isn’t just about running data processes on cloud instances. There is a lot of engineering work required to set and maintain a high-performance standard for speed and availability.

Alok Nikhil (Senior Software Engineer, Confluent) and Adithya Chandra (Staff Software Engineer II, Confluent) share about their efforts on how to optimize Kafka on Confluent Cloud and the three guiding principles that they follow whether you are self-managing Kafka or working on a cloud-native system:

  1. Know your users and plan for their workloads
  2. Infrastructure matters for performance as well as cost efficiency
  3. Effective observability—you can’t improve what you don’t see

A large part of setting and achieving performance standards is about understanding that workloads vary and come with unique requirements. There are different dimensions for performance, such as the number of partitions and the number of connections. Alok and Adithya suggest starting by identifying the workload patterns that are the most important to your business objectives for simulation, reproduction, and using the results to optimize the software.

When identifying workloads, it’s essential to determine the infrastructure that you’ll need to support the given workload economically. Infrastructure optimization is as important as performance optimization. It's best practice to know the infrastructure that you have available to you and choose the appropriate hardware, operating system, and JVM to allocate the processes so that workloads run efficiently.

With the necessary infrastructure patterns in place, it’s crucial to monitor metrics to ensure that your application is running as expected consistently with every release. Having the right observability metrics and logs allows you to identify and troubleshoot issues relatively quickly. Profiling and request sampling also help you dive deeper into performance issues, particularly, during incidents. Alok and Adithya’s team uses tooling such as the async-profiler for profiling CPU cycles, heap allocations, and lock contention.

Alok and Adithya summarize their learnings and processes used for optimizing managed Kafka as a service, which can be applicable to your own cloud-native applications. You can also read more about their journey on the Confluent blog.

EPISODE LINKS

  continue reading

265 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش