32 subscribers
با برنامه Player FM !
پادکست هایی که ارزش شنیدن دارند
حمایت شده


Optimizing Cloud-Native Apache Kafka Performance ft. Alok Nikhil and Adithya Chandra
Manage episode 424666773 series 2510642
Maximizing cloud Apache Kafka® performance isn’t just about running data processes on cloud instances. There is a lot of engineering work required to set and maintain a high-performance standard for speed and availability.
Alok Nikhil (Senior Software Engineer, Confluent) and Adithya Chandra (Staff Software Engineer II, Confluent) share about their efforts on how to optimize Kafka on Confluent Cloud and the three guiding principles that they follow whether you are self-managing Kafka or working on a cloud-native system:
- Know your users and plan for their workloads
- Infrastructure matters for performance as well as cost efficiency
- Effective observability—you can’t improve what you don’t see
A large part of setting and achieving performance standards is about understanding that workloads vary and come with unique requirements. There are different dimensions for performance, such as the number of partitions and the number of connections. Alok and Adithya suggest starting by identifying the workload patterns that are the most important to your business objectives for simulation, reproduction, and using the results to optimize the software.
When identifying workloads, it’s essential to determine the infrastructure that you’ll need to support the given workload economically. Infrastructure optimization is as important as performance optimization. It's best practice to know the infrastructure that you have available to you and choose the appropriate hardware, operating system, and JVM to allocate the processes so that workloads run efficiently.
With the necessary infrastructure patterns in place, it’s crucial to monitor metrics to ensure that your application is running as expected consistently with every release. Having the right observability metrics and logs allows you to identify and troubleshoot issues relatively quickly. Profiling and request sampling also help you dive deeper into performance issues, particularly, during incidents. Alok and Adithya’s team uses tooling such as the async-profiler for profiling CPU cycles, heap allocations, and lock contention.
Alok and Adithya summarize their learnings and processes used for optimizing managed Kafka as a service, which can be applicable to your own cloud-native applications. You can also read more about their journey on the Confluent blog.
EPISODE LINKS
- Speed, Scale, Storage: Our Journey from Apache Kafka to Performance in Confluent Cloud
- Cloud-Native Apache Kafka
- Join the Confluent Community
- Learn more with Kafka tutorials, resources, and guides at Confluent Developer
- Live demo: Intro to Event-Driven Microservices with Confluent
- Use PODCAST100 to get an additional $100 of free Confluent Cloud usage (details)
- Watch the video version of this podcast
265 قسمت
Manage episode 424666773 series 2510642
Maximizing cloud Apache Kafka® performance isn’t just about running data processes on cloud instances. There is a lot of engineering work required to set and maintain a high-performance standard for speed and availability.
Alok Nikhil (Senior Software Engineer, Confluent) and Adithya Chandra (Staff Software Engineer II, Confluent) share about their efforts on how to optimize Kafka on Confluent Cloud and the three guiding principles that they follow whether you are self-managing Kafka or working on a cloud-native system:
- Know your users and plan for their workloads
- Infrastructure matters for performance as well as cost efficiency
- Effective observability—you can’t improve what you don’t see
A large part of setting and achieving performance standards is about understanding that workloads vary and come with unique requirements. There are different dimensions for performance, such as the number of partitions and the number of connections. Alok and Adithya suggest starting by identifying the workload patterns that are the most important to your business objectives for simulation, reproduction, and using the results to optimize the software.
When identifying workloads, it’s essential to determine the infrastructure that you’ll need to support the given workload economically. Infrastructure optimization is as important as performance optimization. It's best practice to know the infrastructure that you have available to you and choose the appropriate hardware, operating system, and JVM to allocate the processes so that workloads run efficiently.
With the necessary infrastructure patterns in place, it’s crucial to monitor metrics to ensure that your application is running as expected consistently with every release. Having the right observability metrics and logs allows you to identify and troubleshoot issues relatively quickly. Profiling and request sampling also help you dive deeper into performance issues, particularly, during incidents. Alok and Adithya’s team uses tooling such as the async-profiler for profiling CPU cycles, heap allocations, and lock contention.
Alok and Adithya summarize their learnings and processes used for optimizing managed Kafka as a service, which can be applicable to your own cloud-native applications. You can also read more about their journey on the Confluent blog.
EPISODE LINKS
- Speed, Scale, Storage: Our Journey from Apache Kafka to Performance in Confluent Cloud
- Cloud-Native Apache Kafka
- Join the Confluent Community
- Learn more with Kafka tutorials, resources, and guides at Confluent Developer
- Live demo: Intro to Event-Driven Microservices with Confluent
- Use PODCAST100 to get an additional $100 of free Confluent Cloud usage (details)
- Watch the video version of this podcast
265 قسمت
همه قسمت ها
×
1 Migrate Your Kafka Cluster with Minimal Downtime 1:01:30

1 Top 6 Worst Apache Kafka JIRA Bugs 1:10:58









1 Optimizing Apache JVMs for Apache Kafka 1:11:42



1 International Podcast Day - Apache Kafka Edition | Streaming Audio Special 1:02:22




1 Capacity Planning Your Apache Kafka Cluster 1:01:54




1 Streaming Analytics and Real-Time Signal Processing with Apache Kafka 1:06:33



1 Common Apache Kafka Mistakes to Avoid 1:09:43













1 Scaling an Apache Kafka Based Architecture at Therapie Clinic 1:10:56





1 The Evolution of Apache Kafka: From In-House Infrastructure to Managed Cloud Service ft. Jay Kreps 46:32



1 Expanding Apache Kafka Multi-Tenancy for Cloud-Native Systems ft. Anna Povzner and Anastasia Vela 31:01



1 From Batch to Real-Time: Tips for Streaming Data Pipelines with Apache Kafka ft. Danica Fine 29:50


















1 How to Build a Strong Developer Community with Global Engagement ft. Robin Moffatt and Ale Murray 35:18







1 Collecting Data with a Custom SIEM System Built on Apache Kafka and Kafka Connect ft. Vitalii Rudenskyi 25:14










1 Engaging Database Partials with Apache Kafka for Distributed System Consistency ft. Pat Helland 42:09

1 The Truth About ZooKeeper Removal and the KIP-500 Release in Apache Kafka ft. Jason Gustafson and Colin McCabe 31:50
















1 Building a Microservices Architecture with Apache Kafka at Nationwide Building Society ft. Rob Jackson 48:54





1 Event Streaming Trends and Predictions for 2021 ft. Gwen Shapira, Ben Stopford, and Michael Noll 44:34


1 Mastering DevOps with Apache Kafka, Kubernetes, and Confluent Cloud ft. Rick Spurgeon and Allison Walther 46:18




1 Tales from the Frontline of Apache Kafka DevOps ft. Jason Bell 1:00:25












1 Using Apache Kafka as the Event-Driven System for 1,500 Microservices at Wix ft. Natan Silnitsky 49:12




1 Disaster Recovery with Multi-Region Clusters in Confluent Platform ft. Anna McDonald and Mitch Henderson 43:04


















1 IoT Integration and Real-Time Data Correlation with Kafka Connect and Kafka Streams ft. Kai Waehner 40:55











به Player FM خوش آمدید!
Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.