Artwork

محتوای ارائه شده توسط Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka®. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka® یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

Real-Time Change Data Capture and Data Integration with Apache Kafka and Qlik

34:51
 
اشتراک گذاری
 

Manage episode 424666775 series 2510642
محتوای ارائه شده توسط Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka®. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka® یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Getting data from a database management system (DBMS) into Apache Kafka® in real time is a subject of ongoing innovation. John Neal (Principal Solution Architect, Qlik) and Adam Mayer (Senior Technical Producer Marketing Manager, Qlik) explain how leveraging change data capture (CDC) for data ingestion into Kafka enables real-time data-driven insights.

It can be challenging to ingest data in real time. It is even more challenging when you have multiple data sources, including both traditional databases and mainframes, such as SAP and Oracle. Extracting data in batch for transfer and replication purposes is slow, and often incurs significant performance penalties. However, analytical queries are often even more resource intensive and are prohibitively expensive to run on production transactional databases. CDC enables the capture of source operations as a sequence of incrementing events, converting the data into events to be written to Kafka.

Once this data is available in the Kafka topics, it can be used for both analytical and operational use cases. Data can be consumed and modeled for analytics by individual groups across your organization. Meanwhile, the same Kafka topics can be used to help power microservice applications and help ensure data governance without impacting your production data source. Kafka makes it easy to integrate your CDC data into your data warehouses, data lake, NoSQL database, microservices, and any other system.

Adam and John highlight a few use cases where they see real-time Kafka data ingestion, processing, and analytics moving the needle—including real-time customer predictions, supply chain optimizations, and operational reporting. Finally, Adam and John cap it off with a discussion on how capturing and tracking data changes are critical for your machine learning model to enrich data quality.

EPISODE LINKS

  continue reading

265 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 424666775 series 2510642
محتوای ارائه شده توسط Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka®. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Confluent, founded by the original creators of Apache Kafka® and Founded by the original creators of Apache Kafka® یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Getting data from a database management system (DBMS) into Apache Kafka® in real time is a subject of ongoing innovation. John Neal (Principal Solution Architect, Qlik) and Adam Mayer (Senior Technical Producer Marketing Manager, Qlik) explain how leveraging change data capture (CDC) for data ingestion into Kafka enables real-time data-driven insights.

It can be challenging to ingest data in real time. It is even more challenging when you have multiple data sources, including both traditional databases and mainframes, such as SAP and Oracle. Extracting data in batch for transfer and replication purposes is slow, and often incurs significant performance penalties. However, analytical queries are often even more resource intensive and are prohibitively expensive to run on production transactional databases. CDC enables the capture of source operations as a sequence of incrementing events, converting the data into events to be written to Kafka.

Once this data is available in the Kafka topics, it can be used for both analytical and operational use cases. Data can be consumed and modeled for analytics by individual groups across your organization. Meanwhile, the same Kafka topics can be used to help power microservice applications and help ensure data governance without impacting your production data source. Kafka makes it easy to integrate your CDC data into your data warehouses, data lake, NoSQL database, microservices, and any other system.

Adam and John highlight a few use cases where they see real-time Kafka data ingestion, processing, and analytics moving the needle—including real-time customer predictions, supply chain optimizations, and operational reporting. Finally, Adam and John cap it off with a discussion on how capturing and tracking data changes are critical for your machine learning model to enrich data quality.

EPISODE LINKS

  continue reading

265 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش