Artwork

محتوای ارائه شده توسط OCDevel. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط OCDevel یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

MLG 033 Transformers

42:14
 
اشتراک گذاری
 

Manage episode 465771261 series 1457335
محتوای ارائه شده توسط OCDevel. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط OCDevel یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Try a walking desk while studying ML or working on your projects! https://ocdevel.com/walk

Show notes: https://ocdevel.com/mlg/33

3Blue1Brown videos: https://3blue1brown.com/

  • Background & Motivation:

    • RNN Limitations: Sequential processing prevents full parallelization—even with attention tweaks—making them inefficient on modern hardware.
    • Breakthrough: “Attention Is All You Need” replaced recurrence with self-attention, unlocking massive parallelism and scalability.
  • Core Architecture:

    • Layer Stack: Consists of alternating self-attention and feed-forward (MLP) layers, each wrapped in residual connections and layer normalization.
    • Positional Encodings: Since self-attention is permutation invariant, add sinusoidal or learned positional embeddings to inject sequence order.
  • Self-Attention Mechanism:

    • Q, K, V Explained:
      • Query (Q): The representation of the token seeking contextual info.
      • Key (K): The representation of tokens being compared against.
      • Value (V): The information to be aggregated based on the attention scores.
    • Multi-Head Attention: Splits Q, K, V into multiple “heads” to capture diverse relationships and nuances across different subspaces.
    • Dot-Product & Scaling: Computes similarity between Q and K (scaled to avoid large gradients), then applies softmax to weigh V accordingly.
  • Masking:

    • Causal Masking: In autoregressive models, prevents a token from “seeing” future tokens, ensuring proper generation.
    • Padding Masks: Ignore padded (non-informative) parts of sequences to maintain meaningful attention distributions.
  • Feed-Forward Networks (MLPs):

    • Transformation & Storage: Post-attention MLPs apply non-linear transformations; many argue they’re where the “facts” or learned knowledge really get stored.
    • Depth & Expressivity: Their layered nature deepens the model’s capacity to represent complex patterns.
  • Residual Connections & Normalization:

    • Residual Links: Crucial for gradient flow in deep architectures, preventing vanishing/exploding gradients.
    • Layer Normalization: Stabilizes training by normalizing across features, enhancing convergence.
  • Scalability & Efficiency Considerations:

    • Parallelization Advantage: Entire architecture is designed to exploit modern parallel hardware, a huge win over RNNs.
    • Complexity Trade-offs: Self-attention’s quadratic complexity with sequence length remains a challenge; spurred innovations like sparse or linearized attention.
  • Training Paradigms & Emergent Properties:

    • Pretraining & Fine-Tuning: Massive self-supervised pretraining on diverse data, followed by task-specific fine-tuning, is the norm.
    • Emergent Behavior: With scale comes abilities like in-context learning and few-shot adaptation, aspects that are still being unpacked.
  • Interpretability & Knowledge Distribution:

    • Distributed Representation: “Facts” aren’t stored in a single layer but are embedded throughout both attention heads and MLP layers.
    • Debate on Attention: While some see attention weights as interpretable, a growing view is that real “knowledge” is diffused across the network’s parameters.
  continue reading

55 قسمت

Artwork

MLG 033 Transformers

Machine Learning Guide

590 subscribers

published

iconاشتراک گذاری
 
Manage episode 465771261 series 1457335
محتوای ارائه شده توسط OCDevel. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط OCDevel یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Try a walking desk while studying ML or working on your projects! https://ocdevel.com/walk

Show notes: https://ocdevel.com/mlg/33

3Blue1Brown videos: https://3blue1brown.com/

  • Background & Motivation:

    • RNN Limitations: Sequential processing prevents full parallelization—even with attention tweaks—making them inefficient on modern hardware.
    • Breakthrough: “Attention Is All You Need” replaced recurrence with self-attention, unlocking massive parallelism and scalability.
  • Core Architecture:

    • Layer Stack: Consists of alternating self-attention and feed-forward (MLP) layers, each wrapped in residual connections and layer normalization.
    • Positional Encodings: Since self-attention is permutation invariant, add sinusoidal or learned positional embeddings to inject sequence order.
  • Self-Attention Mechanism:

    • Q, K, V Explained:
      • Query (Q): The representation of the token seeking contextual info.
      • Key (K): The representation of tokens being compared against.
      • Value (V): The information to be aggregated based on the attention scores.
    • Multi-Head Attention: Splits Q, K, V into multiple “heads” to capture diverse relationships and nuances across different subspaces.
    • Dot-Product & Scaling: Computes similarity between Q and K (scaled to avoid large gradients), then applies softmax to weigh V accordingly.
  • Masking:

    • Causal Masking: In autoregressive models, prevents a token from “seeing” future tokens, ensuring proper generation.
    • Padding Masks: Ignore padded (non-informative) parts of sequences to maintain meaningful attention distributions.
  • Feed-Forward Networks (MLPs):

    • Transformation & Storage: Post-attention MLPs apply non-linear transformations; many argue they’re where the “facts” or learned knowledge really get stored.
    • Depth & Expressivity: Their layered nature deepens the model’s capacity to represent complex patterns.
  • Residual Connections & Normalization:

    • Residual Links: Crucial for gradient flow in deep architectures, preventing vanishing/exploding gradients.
    • Layer Normalization: Stabilizes training by normalizing across features, enhancing convergence.
  • Scalability & Efficiency Considerations:

    • Parallelization Advantage: Entire architecture is designed to exploit modern parallel hardware, a huge win over RNNs.
    • Complexity Trade-offs: Self-attention’s quadratic complexity with sequence length remains a challenge; spurred innovations like sparse or linearized attention.
  • Training Paradigms & Emergent Properties:

    • Pretraining & Fine-Tuning: Massive self-supervised pretraining on diverse data, followed by task-specific fine-tuning, is the norm.
    • Emergent Behavior: With scale comes abilities like in-context learning and few-shot adaptation, aspects that are still being unpacked.
  • Interpretability & Knowledge Distribution:

    • Distributed Representation: “Facts” aren’t stored in a single layer but are embedded throughout both attention heads and MLP layers.
    • Debate on Attention: While some see attention weights as interpretable, a growing view is that real “knowledge” is diffused across the network’s parameters.
  continue reading

55 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش