Artwork

محتوای ارائه شده توسط OCDevel. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط OCDevel یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

MLA 011 Practical Clustering Tools

34:50
 
اشتراک گذاری
 

Manage episode 305186094 series 1457335
محتوای ارائه شده توسط OCDevel. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط OCDevel یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Primary clustering tools for practical applications include K-means using scikit-learn or Faiss, agglomerative clustering leveraging cosine similarity with scikit-learn, and density-based methods like DBSCAN or HDBSCAN. For determining the optimal number of clusters, silhouette score is generally preferred over inertia-based visual heuristics, and it natively supports pre-computed distance matrices.

Links K-means Clustering
  • K-means is the most widely used clustering algorithm and is typically the first method to try for general clustering tasks.
  • The scikit-learn KMeans implementation is suitable for small to medium-sized datasets, while Faiss's kmeans is more efficient and accurate for very large datasets.
  • K-means requires the number of clusters to be specified in advance and relies on the Euclidean distance metric, which performs poorly in high-dimensional spaces.
  • When document embeddings have high dimensionality (e.g., 768 dimensions from sentence transformers), K-means becomes less effective due to the limitations of Euclidean distance in such spaces.
Alternatives to K-means for High Dimensions
  • For text embeddings with high dimensionality, agglomerative (hierarchical) clustering methods are preferable, particularly because they allow the use of different similarity metrics.
  • Agglomerative clustering in scikit-learn accepts a pre-computed cosine similarity matrix, which is more appropriate for natural language processing.
  • Constructing the pre-computed distance (or similarity) matrix involves normalizing vectors and computing dot products, which can be efficiently achieved with linear algebra libraries like PyTorch.
  • Hierarchical algorithms do not use inertia in the same way as K-means and instead rely on external metrics, such as silhouette score.
  • Other clustering algorithms exist, including spectral, mean shift, and affinity propagation, which are not covered in this episode.
Semantic Search and Vector Indexing
  • Libraries such as Faiss, Annoy, and HNSWlib provide approximate nearest neighbor search for efficient semantic search on large-scale vector data.
  • These systems create an index of your embeddings to enable rapid similarity search, often with the ability to specify cosine similarity as the metric.
  • Sample code using these libraries with sentence transformers can be found in the UKP Lab sentence-transformers examples directory.
Determining the Optimal Number of Clusters
  • Both K-means and agglomerative clustering require a predefined number of clusters, but this is often unknown beforehand.
  • The "elbow" method involves running the clustering algorithm with varying cluster counts and plotting the inertia (sum of squared distances within clusters) to visually identify the point of diminishing returns; see kmeans.inertia_.
  • The kneed package can automatically detect the "elbow" or "knee" in the inertia plot, eliminating subjective human judgment; sample code available here.
  • The silhouette score, calculated via silhouette_score, considers both inter- and intra-cluster distances and allows for direct selection of the number of clusters with the maximum score.
  • The silhouette score can be computed using a pre-computed distance matrix (such as from cosine similarities), making it well-suited for applications involving non-Euclidean metrics and hierarchical clustering.
Density-Based Clustering: DBSCAN and HDBSCAN
  • DBSCAN is a hierarchical clustering method that does not require specifying the number of clusters, instead discovering clusters based on data density.
  • HDBSCAN is a more popular and versatile implementation of density-based clustering, capable of handling various types of data without significant parameter tuning.
  • DBSCAN and HDBSCAN can be preferable to K-means or agglomerative clustering when automatic determination of cluster count or robustness to noise is important.
  • However, these algorithms may not perform well with all types of high-dimensional embedding data, as illustrated by the challenges faced when clustering 768-dimensional text embeddings.
Summary Recommendations and Links
  continue reading

63 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 305186094 series 1457335
محتوای ارائه شده توسط OCDevel. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط OCDevel یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Primary clustering tools for practical applications include K-means using scikit-learn or Faiss, agglomerative clustering leveraging cosine similarity with scikit-learn, and density-based methods like DBSCAN or HDBSCAN. For determining the optimal number of clusters, silhouette score is generally preferred over inertia-based visual heuristics, and it natively supports pre-computed distance matrices.

Links K-means Clustering
  • K-means is the most widely used clustering algorithm and is typically the first method to try for general clustering tasks.
  • The scikit-learn KMeans implementation is suitable for small to medium-sized datasets, while Faiss's kmeans is more efficient and accurate for very large datasets.
  • K-means requires the number of clusters to be specified in advance and relies on the Euclidean distance metric, which performs poorly in high-dimensional spaces.
  • When document embeddings have high dimensionality (e.g., 768 dimensions from sentence transformers), K-means becomes less effective due to the limitations of Euclidean distance in such spaces.
Alternatives to K-means for High Dimensions
  • For text embeddings with high dimensionality, agglomerative (hierarchical) clustering methods are preferable, particularly because they allow the use of different similarity metrics.
  • Agglomerative clustering in scikit-learn accepts a pre-computed cosine similarity matrix, which is more appropriate for natural language processing.
  • Constructing the pre-computed distance (or similarity) matrix involves normalizing vectors and computing dot products, which can be efficiently achieved with linear algebra libraries like PyTorch.
  • Hierarchical algorithms do not use inertia in the same way as K-means and instead rely on external metrics, such as silhouette score.
  • Other clustering algorithms exist, including spectral, mean shift, and affinity propagation, which are not covered in this episode.
Semantic Search and Vector Indexing
  • Libraries such as Faiss, Annoy, and HNSWlib provide approximate nearest neighbor search for efficient semantic search on large-scale vector data.
  • These systems create an index of your embeddings to enable rapid similarity search, often with the ability to specify cosine similarity as the metric.
  • Sample code using these libraries with sentence transformers can be found in the UKP Lab sentence-transformers examples directory.
Determining the Optimal Number of Clusters
  • Both K-means and agglomerative clustering require a predefined number of clusters, but this is often unknown beforehand.
  • The "elbow" method involves running the clustering algorithm with varying cluster counts and plotting the inertia (sum of squared distances within clusters) to visually identify the point of diminishing returns; see kmeans.inertia_.
  • The kneed package can automatically detect the "elbow" or "knee" in the inertia plot, eliminating subjective human judgment; sample code available here.
  • The silhouette score, calculated via silhouette_score, considers both inter- and intra-cluster distances and allows for direct selection of the number of clusters with the maximum score.
  • The silhouette score can be computed using a pre-computed distance matrix (such as from cosine similarities), making it well-suited for applications involving non-Euclidean metrics and hierarchical clustering.
Density-Based Clustering: DBSCAN and HDBSCAN
  • DBSCAN is a hierarchical clustering method that does not require specifying the number of clusters, instead discovering clusters based on data density.
  • HDBSCAN is a more popular and versatile implementation of density-based clustering, capable of handling various types of data without significant parameter tuning.
  • DBSCAN and HDBSCAN can be preferable to K-means or agglomerative clustering when automatic determination of cluster count or robustness to noise is important.
  • However, these algorithms may not perform well with all types of high-dimensional embedding data, as illustrated by the challenges faced when clustering 768-dimensional text embeddings.
Summary Recommendations and Links
  continue reading

63 قسمت

All episodes

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش