Artwork

محتوای ارائه شده توسط BlueDot Impact. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط BlueDot Impact یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

Deep Double Descent

8:27
 
اشتراک گذاری
 

Manage episode 424087967 series 3498845
محتوای ارائه شده توسط BlueDot Impact. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط BlueDot Impact یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

We show that the double descent phenomenon occurs in CNNs, ResNets, and transformers: performance first improves, then gets worse, and then improves again with increasing model size, data size, or training time. This effect is often avoided through careful regularization. While this behavior appears to be fairly universal, we don’t yet fully understand why it happens, and view further study of this phenomenon as an important research direction.

Source:

https://openai.com/research/deep-double-descent

Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.

---

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

فصل ها

1. Deep Double Descent (00:00:00)

2. Model-wise double descent (00:02:28)

3. Sample-wise non-monotonicity (00:04:39)

4. Epoch-wise double descent (00:06:14)

83 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 424087967 series 3498845
محتوای ارائه شده توسط BlueDot Impact. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط BlueDot Impact یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

We show that the double descent phenomenon occurs in CNNs, ResNets, and transformers: performance first improves, then gets worse, and then improves again with increasing model size, data size, or training time. This effect is often avoided through careful regularization. While this behavior appears to be fairly universal, we don’t yet fully understand why it happens, and view further study of this phenomenon as an important research direction.

Source:

https://openai.com/research/deep-double-descent

Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.

---

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

فصل ها

1. Deep Double Descent (00:00:00)

2. Model-wise double descent (00:02:28)

3. Sample-wise non-monotonicity (00:04:39)

4. Epoch-wise double descent (00:06:14)

83 قسمت

Semua episod

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع