Artwork

محتوای ارائه شده توسط Real Python. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Real Python یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

Detecting Outliers in Your Data With Python

1:07:17
 
اشتراک گذاری
 

Manage episode 423562208 series 2637014
محتوای ارائه شده توسط Real Python. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Real Python یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

How do you find the most interesting or suspicious points within your data? What libraries and techniques can you use to detect these anomalies with Python? This week on the show, we speak with author Brett Kennedy about his book “Outlier Detection in Python.”

Brett describes initially getting involved with detecting outliers in financial data. He discusses various applications and techniques in security, manufacturing, quality assurance, and fraud. We also dig into the concept of explainable AI and the differences between supervised and unsupervised learning.

This episode is sponsored by APILayer.

Course Spotlight: Using k-Nearest Neighbors (kNN) in Python

In this video course, you’ll learn all about the k-nearest neighbors (kNN) algorithm in Python, including how to implement kNN from scratch. Once you understand how kNN works, you’ll use scikit-learn to facilitate your coding process.

Topics:

  • 00:00:00 – Introduction
  • 00:01:56 – Describing the book
  • 00:03:22 – How did you get involved in outlier detection?
  • 00:06:50 – Initially looking at the data to spot errors
  • 00:08:22 – Amount of fraud and financial errors
  • 00:09:50 – Understanding the nature of the outliers
  • 00:12:15 – Industries that would be interested in detection
  • 00:18:21 – Sponsor: APILayer.com
  • 00:19:15 – Who is the intended audience for the book?
  • 00:22:16 – Differences between supervised vs unsupervised learning
  • 00:25:48 – Autonomous vehicles detecting anomalous imagery
  • 00:29:08 – What is explainable AI?
  • 00:36:21 – Video Course Spotlight
  • 00:37:43 – Detecting an outlier across multiple columns
  • 00:44:32 – Detection of LLM and bot activity
  • 00:49:49 – Proving you are a human checkbox
  • 00:52:25 – What are Python libraries for outlier detection?
  • 00:53:57 – Creating synthetic data to work through examples
  • 00:57:10 – Tools developed and described in the book
  • 01:01:29 – How to find the book
  • 01:02:27 – What are you excited about in the world of Python?
  • 01:04:55 – What do you want to learn next?
  • 01:05:52 – How can people follow your work online?
  • 01:06:16 – Thanks and goodbye

Show Links:

Level up your Python skills with our expert-led courses:

Support the podcast & join our community of Pythonistas

  continue reading

248 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 423562208 series 2637014
محتوای ارائه شده توسط Real Python. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Real Python یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

How do you find the most interesting or suspicious points within your data? What libraries and techniques can you use to detect these anomalies with Python? This week on the show, we speak with author Brett Kennedy about his book “Outlier Detection in Python.”

Brett describes initially getting involved with detecting outliers in financial data. He discusses various applications and techniques in security, manufacturing, quality assurance, and fraud. We also dig into the concept of explainable AI and the differences between supervised and unsupervised learning.

This episode is sponsored by APILayer.

Course Spotlight: Using k-Nearest Neighbors (kNN) in Python

In this video course, you’ll learn all about the k-nearest neighbors (kNN) algorithm in Python, including how to implement kNN from scratch. Once you understand how kNN works, you’ll use scikit-learn to facilitate your coding process.

Topics:

  • 00:00:00 – Introduction
  • 00:01:56 – Describing the book
  • 00:03:22 – How did you get involved in outlier detection?
  • 00:06:50 – Initially looking at the data to spot errors
  • 00:08:22 – Amount of fraud and financial errors
  • 00:09:50 – Understanding the nature of the outliers
  • 00:12:15 – Industries that would be interested in detection
  • 00:18:21 – Sponsor: APILayer.com
  • 00:19:15 – Who is the intended audience for the book?
  • 00:22:16 – Differences between supervised vs unsupervised learning
  • 00:25:48 – Autonomous vehicles detecting anomalous imagery
  • 00:29:08 – What is explainable AI?
  • 00:36:21 – Video Course Spotlight
  • 00:37:43 – Detecting an outlier across multiple columns
  • 00:44:32 – Detection of LLM and bot activity
  • 00:49:49 – Proving you are a human checkbox
  • 00:52:25 – What are Python libraries for outlier detection?
  • 00:53:57 – Creating synthetic data to work through examples
  • 00:57:10 – Tools developed and described in the book
  • 01:01:29 – How to find the book
  • 01:02:27 – What are you excited about in the world of Python?
  • 01:04:55 – What do you want to learn next?
  • 01:05:52 – How can people follow your work online?
  • 01:06:16 – Thanks and goodbye

Show Links:

Level up your Python skills with our expert-led courses:

Support the podcast & join our community of Pythonistas

  continue reading

248 قسمت

All episodes

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش