Artwork

محتوای ارائه شده توسط Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

Threats for Machine Learning

1:01:23
 
اشتراک گذاری
 

Manage episode 273926233 series 1264075
محتوای ارائه شده توسط Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

This webcast illustrated where machine learning applications can be attacked, the means for carrying out the attack and some mitigations that can be employed. The elements in building and deploying a machine learning application are reviewed, considering both data and processes. The impact of attacks on each element is considered in turn. Special attention is given to transfer learning, a popular way to construct quickly a machine learning application. Mitigations to these attacks are discussed with the engineering tradeoffs between security and accuracy. Finally, the methods by which an attacker could get access to the machine learning system were reviewed.

Speaker: Dr. Mark Sherman

  continue reading

168 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 273926233 series 1264075
محتوای ارائه شده توسط Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

This webcast illustrated where machine learning applications can be attacked, the means for carrying out the attack and some mitigations that can be employed. The elements in building and deploying a machine learning application are reviewed, considering both data and processes. The impact of attacks on each element is considered in turn. Special attention is given to transfer learning, a popular way to construct quickly a machine learning application. Mitigations to these attacks are discussed with the engineering tradeoffs between security and accuracy. Finally, the methods by which an attacker could get access to the machine learning system were reviewed.

Speaker: Dr. Mark Sherman

  continue reading

168 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش