32 subscribers
با برنامه Player FM !
پادکست هایی که ارزش شنیدن دارند
حمایت شده


1 Battle Camp S1: Reality Rivalries with Dana Moon & QT 1:00:36
Functionalization
Manage episode 292370110 series 2921809
Functionalization is the process by which we remove mutation from autograd graphs in PyTorch, leaving us with a purely functional graph that we can execute in the normal way. Why do we need to do functionalization? What makes it not so easy to do? How do we do it? And how does it compare to mutation removal that you might see in a compiler?
Further reading:
- Section 3.1 of this paper on PyTorch AD https://openreview.net/pdf/25b8eee6c373d48b84e5e9c6e10e7cbbbce4ac73.pdf predates our implementation of inplace autograd but accurately reports the subtleties and correctly predicts the implementation strategy we ended up taking
- RFC to generalize the functionalization mechanism to be available to arbitrary backends https://github.com/pytorch/rfcs/pull/19
- Code that handles lazily updating views when the base is updated https://github.com/pytorch/pytorch/blob/e5e095cbe4dbc5a601f98e6134dcbd59c6342d7d/torch/csrc/autograd/variable.cpp#L556-L603
83 قسمت
Manage episode 292370110 series 2921809
Functionalization is the process by which we remove mutation from autograd graphs in PyTorch, leaving us with a purely functional graph that we can execute in the normal way. Why do we need to do functionalization? What makes it not so easy to do? How do we do it? And how does it compare to mutation removal that you might see in a compiler?
Further reading:
- Section 3.1 of this paper on PyTorch AD https://openreview.net/pdf/25b8eee6c373d48b84e5e9c6e10e7cbbbce4ac73.pdf predates our implementation of inplace autograd but accurately reports the subtleties and correctly predicts the implementation strategy we ended up taking
- RFC to generalize the functionalization mechanism to be available to arbitrary backends https://github.com/pytorch/rfcs/pull/19
- Code that handles lazily updating views when the base is updated https://github.com/pytorch/pytorch/blob/e5e095cbe4dbc5a601f98e6134dcbd59c6342d7d/torch/csrc/autograd/variable.cpp#L556-L603
83 قسمت
همه قسمت ها
×

















































به Player FM خوش آمدید!
Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.