Artwork

محتوای ارائه شده توسط PyTorch, Edward Yang, and Team PyTorch. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط PyTorch, Edward Yang, and Team PyTorch یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

CUDA graph trees

20:50
 
اشتراک گذاری
 

Manage episode 408615350 series 2921809
محتوای ارائه شده توسط PyTorch, Edward Yang, and Team PyTorch. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط PyTorch, Edward Yang, and Team PyTorch یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
CUDA graph trees are the internal implementation of CUDA graphs used in PT2 when you say mode="reduce-overhead". Their primary innovation is that they allow the reuse of memory across multiple CUDA graphs, as long as they form a tree structure of potential paths you can go down with the CUDA graph. This greatly reduced the memory usage of CUDA graphs in PT2. There are some operational implications to using CUDA graphs which are described in the podcast.
  continue reading

83 قسمت

Artwork

CUDA graph trees

PyTorch Developer Podcast

26 subscribers

published

iconاشتراک گذاری
 
Manage episode 408615350 series 2921809
محتوای ارائه شده توسط PyTorch, Edward Yang, and Team PyTorch. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط PyTorch, Edward Yang, and Team PyTorch یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
CUDA graph trees are the internal implementation of CUDA graphs used in PT2 when you say mode="reduce-overhead". Their primary innovation is that they allow the reuse of memory across multiple CUDA graphs, as long as they form a tree structure of potential paths you can go down with the CUDA graph. This greatly reduced the memory usage of CUDA graphs in PT2. There are some operational implications to using CUDA graphs which are described in the podcast.
  continue reading

83 قسمت

כל הפרקים

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش