51 subscribers
با برنامه Player FM !
Challenges Operationalizing ML (And Some Solutions) // Nathan Ryan Frank // #199
Manage episode 392291191 series 3241972
Nathan Ryan Frank is the Machine Learning Operations and platform Director of Grainger. Former Astrophysicist turned data scientist and machine learning engineer with a proven history of delivering results into production across a wide variety of domains while leading projects with international, cross-functional teams. MLOps podcast #199 with Nathan Ryan Frank, Director, Machine Learning Platform & Operations at WW Grainger, Challenges Operationalizing Machine Learning (And Some Solutions). // Abstract This talk details some common challenges and pitfalls when attempting to operationalize machine learning systems and discusses some simple solutions. We dive into the machine learning development workflow and cover topics such as team dynamics, communication issues between roles that don't share a common language, and approaching MLOps from an SRE/DevOps perspective. Similarly, the talk highlights some challenges unique to operationalizing machine learning, drawing distinctions where necessary to highlight a large amount of similarity. Finally, the talk offers some simple and practical guidance for those new to MLOps who want to understand where to start and how to adopt best practices in an evolving field. // Bio Nathan Frank is currently the Director of Machine Learning Platform and Operations at Grainger where he is building a team to support the Technology Group's expanding machine learning efforts. Prior to joining Grainger, Nathan led machine learning engineering efforts at Strong Analytics, a boutique data science and machine learning consulting firm, as well as machine learning platform and development teams at Stats Perform, a leader in sports data and technology. Nathan holds bachelor's and master's degrees in Astrophysics from UC - Santa Cruz and UNC-Chapel Hill, respectively. When not building machine learning systems, Nathan spends as much time as possible with his favorite person in the world, his wife, as well as their four kids and two dogs, and enjoys getting outside to hike or garden and baking bread. // MLOps Jobs board https://mlops.pallet.xyz/jobs // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Website: https://nrfrank.github.io/ Bisi: https://bisi.gitbook.io/bisi/ --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Nathan on LinkedIn: https://www.linkedin.com/in/nrfrank Timestamps: [00:00] Nathan's preferred coffee [00:40] Takeaways [02:00] Please leave a review in our comment sections! Please like, share, and subscribe to our MLOps channels! [03:00] Telescope for gamma-ray burst [07:31] Transition into ML [11:23] Stats-heavy US sports commentary [14:25] Building machine learning systems approach [20:02] ML Workflow Must-Haves [26:50] Love for tests [33:10] Test Writing Importance [34:37] Bridging Stakeholder Language Gap [43:04] Shared Language, Team Collaboration [47:28] Rapid fire questions [51:20] Wrap up
435 قسمت
Manage episode 392291191 series 3241972
Nathan Ryan Frank is the Machine Learning Operations and platform Director of Grainger. Former Astrophysicist turned data scientist and machine learning engineer with a proven history of delivering results into production across a wide variety of domains while leading projects with international, cross-functional teams. MLOps podcast #199 with Nathan Ryan Frank, Director, Machine Learning Platform & Operations at WW Grainger, Challenges Operationalizing Machine Learning (And Some Solutions). // Abstract This talk details some common challenges and pitfalls when attempting to operationalize machine learning systems and discusses some simple solutions. We dive into the machine learning development workflow and cover topics such as team dynamics, communication issues between roles that don't share a common language, and approaching MLOps from an SRE/DevOps perspective. Similarly, the talk highlights some challenges unique to operationalizing machine learning, drawing distinctions where necessary to highlight a large amount of similarity. Finally, the talk offers some simple and practical guidance for those new to MLOps who want to understand where to start and how to adopt best practices in an evolving field. // Bio Nathan Frank is currently the Director of Machine Learning Platform and Operations at Grainger where he is building a team to support the Technology Group's expanding machine learning efforts. Prior to joining Grainger, Nathan led machine learning engineering efforts at Strong Analytics, a boutique data science and machine learning consulting firm, as well as machine learning platform and development teams at Stats Perform, a leader in sports data and technology. Nathan holds bachelor's and master's degrees in Astrophysics from UC - Santa Cruz and UNC-Chapel Hill, respectively. When not building machine learning systems, Nathan spends as much time as possible with his favorite person in the world, his wife, as well as their four kids and two dogs, and enjoys getting outside to hike or garden and baking bread. // MLOps Jobs board https://mlops.pallet.xyz/jobs // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Website: https://nrfrank.github.io/ Bisi: https://bisi.gitbook.io/bisi/ --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Nathan on LinkedIn: https://www.linkedin.com/in/nrfrank Timestamps: [00:00] Nathan's preferred coffee [00:40] Takeaways [02:00] Please leave a review in our comment sections! Please like, share, and subscribe to our MLOps channels! [03:00] Telescope for gamma-ray burst [07:31] Transition into ML [11:23] Stats-heavy US sports commentary [14:25] Building machine learning systems approach [20:02] ML Workflow Must-Haves [26:50] Love for tests [33:10] Test Writing Importance [34:37] Bridging Stakeholder Language Gap [43:04] Shared Language, Team Collaboration [47:28] Rapid fire questions [51:20] Wrap up
435 قسمت
All episodes
×
1 A Candid Conversation Around MCP and A2A // Rahul Parundekar and Sam Partee // #316 SF Live 1:04:42

1 Making AI Reliable is the Greatest Challenge of the 2020s // Alon Bochman // #312 1:01:37

1 Behavior Modeling, Secondary AI Effects, Bias Reduction & Synthetic Data // Devansh Devansh // #311 1:01:35

1 GraphBI: Expanding Analytics to All Data Through the Combination of GenAI, Graph, & Visual Analytics // Paco Nathan & Weidong Yang // #310 1:14:01

1 I Am Once Again Asking "What is MLOps?" // Oleksandr Stasyk // #308 1:07:22

1 Agents of Innovation: AI-Powered Product Ideation with Synthetic Consumer Testing // Luca Fiaschi // #306 1:02:23

1 We're All Finetuning Incorrectly // Tanmay Chopra // #304 1:00:30
به Player FM خوش آمدید!
Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.