Artwork

محتوای ارائه شده توسط Demetrios. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Demetrios یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

GraphBI: Expanding Analytics to All Data Through the Combination of GenAI, Graph, & Visual Analytics // Paco Nathan & Weidong Yang // #310

1:14:01
 
اشتراک گذاری
 

Manage episode 479774854 series 3241972
محتوای ارائه شده توسط Demetrios. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Demetrios یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

GraphBI: Expanding Analytics to All Data Through the Combination of GenAI, Graph, & Visual Analytics // MLOps Podcast #310 with Paco Nathan, Principal DevRel Engineer at Senzing & Weidong Yang, CEO of Kineviz.

Join the Community: https://go.mlops.community/YTJoinIn

Get the newsletter: https://go.mlops.community/YTNewsletter

// Abstract

Existing BI and big data solutions depend largely on structured data, which makes up only about 20% of all available information, leaving the vast majority untapped. In this talk, we introduce GraphBI, which aims to address this challenge by combining GenAI, graph technology, and visual analytics to unlock the full potential of enterprise data.

Recent technologies like RAG (Retrieval-Augmented Generation) and GraphRAG leverage GenAI for tasks such as summarization and Q&A, but they often function as black boxes, making verification challenging. In contrast, GraphBI uses GenAI for data pre-processing—converting unstructured data into a graph-based format—enabling a transparent, step-by-step analytics process that ensures reliability.

We will walk through the GraphBI workflow, exploring best practices and challenges in each step of the process: managing both structured and unstructured data, data pre-processing with GenAI, iterative analytics using a BI-focused graph grammar, and final insight presentation. This approach uniquely surfaces business insights by effectively incorporating all types of data.

// Bio

Paco Nathan

Paco is a "player/coach" who excels in data science, machine learning, and natural language, with 40 years of industry experience. He leads DevRel for the Entity Resolved Knowledge Graph practice area at Senzing.com and advises Argilla.io, Kurve.ai, KungFu.ai, and DataSpartan.co.uk, and is lead committer for the pytextrank​ and kglab​ open source projects. Formerly: Director of Learning Group at O'Reilly Media; and Director of Community Evangelism at Databricks.

Weidong Yang

Weidong Yang, Ph.D., is the founder and CEO of Kineviz, a San Francisco-based company that develops interactive visual analytics based solutions to address complex big data problems. His expertise spans Physics, Computer Science and Performing Art, with significant contributions to the semiconductor industry and quantum dot research at UC, Berkeley and Silicon Valley. Yang also leads Kinetech Arts, a 501(c) non-profit blending dance, science, and technology. An eloquent public speaker and performer, he holds 11 US patents, including the groundbreaking Diffraction-based Overlay technology, vital for sub-10-nm semiconductor production.

// Related Links

Website: https://www.kineviz.com/

Blog: https://medium.com/kineviz

Website: https://derwen.ai/pacohttps://huggingface.co/pacoid

https://github.com/ceterihttps://neo4j.com/developer-blog/entity-resolved-knowledge-graphs/

~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~

Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExplore

Join our Slack community [https://go.mlops.community/slack]

Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)]

Sign up for the next meetup: [https://go.mlops.community/register]

MLOps Swag/Merch: [https://shop.mlops.community/]

Connect with Demetrios on LinkedIn: /dpbrinkm

Connect with Weidong on LinkedIn: /yangweidong/

Connect with Paco on LinkedIn: /ceteri/

Timestamps:

[00:00] Wei's preferred coffee

[00:26] Takeaways

[00:50] Please like, share, leave a review, and subscribe to our MLOps channels!

[01:06] PII Anonymization Techniques

[09:49] Graph RAG Differentiation Ideas

[19:55] Ontologies vs Embeddings in AI

[30:05] Graph Exploration and Insight

[39:25] Iceberg Data Metaphor

[41:19] Contextual Data Visualization

[42:44] Granularity vs Domain Shifting

[49:51] Visualization Access Control

[53:37] Graph RAG Use Cases

[59:16] IoT and Graphs

[1:01:15] Data Visualization

[1:12:14] Wrap up

  continue reading

472 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 479774854 series 3241972
محتوای ارائه شده توسط Demetrios. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Demetrios یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

GraphBI: Expanding Analytics to All Data Through the Combination of GenAI, Graph, & Visual Analytics // MLOps Podcast #310 with Paco Nathan, Principal DevRel Engineer at Senzing & Weidong Yang, CEO of Kineviz.

Join the Community: https://go.mlops.community/YTJoinIn

Get the newsletter: https://go.mlops.community/YTNewsletter

// Abstract

Existing BI and big data solutions depend largely on structured data, which makes up only about 20% of all available information, leaving the vast majority untapped. In this talk, we introduce GraphBI, which aims to address this challenge by combining GenAI, graph technology, and visual analytics to unlock the full potential of enterprise data.

Recent technologies like RAG (Retrieval-Augmented Generation) and GraphRAG leverage GenAI for tasks such as summarization and Q&A, but they often function as black boxes, making verification challenging. In contrast, GraphBI uses GenAI for data pre-processing—converting unstructured data into a graph-based format—enabling a transparent, step-by-step analytics process that ensures reliability.

We will walk through the GraphBI workflow, exploring best practices and challenges in each step of the process: managing both structured and unstructured data, data pre-processing with GenAI, iterative analytics using a BI-focused graph grammar, and final insight presentation. This approach uniquely surfaces business insights by effectively incorporating all types of data.

// Bio

Paco Nathan

Paco is a "player/coach" who excels in data science, machine learning, and natural language, with 40 years of industry experience. He leads DevRel for the Entity Resolved Knowledge Graph practice area at Senzing.com and advises Argilla.io, Kurve.ai, KungFu.ai, and DataSpartan.co.uk, and is lead committer for the pytextrank​ and kglab​ open source projects. Formerly: Director of Learning Group at O'Reilly Media; and Director of Community Evangelism at Databricks.

Weidong Yang

Weidong Yang, Ph.D., is the founder and CEO of Kineviz, a San Francisco-based company that develops interactive visual analytics based solutions to address complex big data problems. His expertise spans Physics, Computer Science and Performing Art, with significant contributions to the semiconductor industry and quantum dot research at UC, Berkeley and Silicon Valley. Yang also leads Kinetech Arts, a 501(c) non-profit blending dance, science, and technology. An eloquent public speaker and performer, he holds 11 US patents, including the groundbreaking Diffraction-based Overlay technology, vital for sub-10-nm semiconductor production.

// Related Links

Website: https://www.kineviz.com/

Blog: https://medium.com/kineviz

Website: https://derwen.ai/pacohttps://huggingface.co/pacoid

https://github.com/ceterihttps://neo4j.com/developer-blog/entity-resolved-knowledge-graphs/

~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~

Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExplore

Join our Slack community [https://go.mlops.community/slack]

Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)]

Sign up for the next meetup: [https://go.mlops.community/register]

MLOps Swag/Merch: [https://shop.mlops.community/]

Connect with Demetrios on LinkedIn: /dpbrinkm

Connect with Weidong on LinkedIn: /yangweidong/

Connect with Paco on LinkedIn: /ceteri/

Timestamps:

[00:00] Wei's preferred coffee

[00:26] Takeaways

[00:50] Please like, share, leave a review, and subscribe to our MLOps channels!

[01:06] PII Anonymization Techniques

[09:49] Graph RAG Differentiation Ideas

[19:55] Ontologies vs Embeddings in AI

[30:05] Graph Exploration and Insight

[39:25] Iceberg Data Metaphor

[41:19] Contextual Data Visualization

[42:44] Granularity vs Domain Shifting

[49:51] Visualization Access Control

[53:37] Graph RAG Use Cases

[59:16] IoT and Graphs

[1:01:15] Data Visualization

[1:12:14] Wrap up

  continue reading

472 قسمت

Kaikki jaksot

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش