

حمایت شده
This story was originally published on HackerNoon at: https://hackernoon.com/a-consensus-based-algorithm-for-non-convex-multiplayer-games-abstract-and-introduction.
A novel algorithm using swarm intelligence to find global Nash equilibria in nonconvex multiplayer games, with convergence guarantees and numerical experiments.
Check more stories related to gaming at: https://hackernoon.com/c/gaming. You can also check exclusive content about #games, #numerical-experiments, #consensus-based-optimization, #zeroth-order-algorithm, #nonconvex-multiplayer-games, #global-nash-equilibria, #metaheuristics, #mean-field-convergence, and more.
This story was written by: @oligopoly. Learn more about this writer by checking @oligopoly's about page, and for more stories, please visit hackernoon.com.
In this paper, we present a novel consensus-based zeroth-order algorithm tailored for nonconvex multiplayer games. The proposed method leverages a metaheuristic approach using concepts from swarm intelligence to reliably identify global Nash equilibria. We utilize a group of interacting particles, each agreeing on a specific consensus point, asymptotically converging to the corresponding optimal strategy.
135 قسمت
This story was originally published on HackerNoon at: https://hackernoon.com/a-consensus-based-algorithm-for-non-convex-multiplayer-games-abstract-and-introduction.
A novel algorithm using swarm intelligence to find global Nash equilibria in nonconvex multiplayer games, with convergence guarantees and numerical experiments.
Check more stories related to gaming at: https://hackernoon.com/c/gaming. You can also check exclusive content about #games, #numerical-experiments, #consensus-based-optimization, #zeroth-order-algorithm, #nonconvex-multiplayer-games, #global-nash-equilibria, #metaheuristics, #mean-field-convergence, and more.
This story was written by: @oligopoly. Learn more about this writer by checking @oligopoly's about page, and for more stories, please visit hackernoon.com.
In this paper, we present a novel consensus-based zeroth-order algorithm tailored for nonconvex multiplayer games. The proposed method leverages a metaheuristic approach using concepts from swarm intelligence to reliably identify global Nash equilibria. We utilize a group of interacting particles, each agreeing on a specific consensus point, asymptotically converging to the corresponding optimal strategy.
135 قسمت
Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.