Artwork

محتوای ارائه شده توسط David Such. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط David Such یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

Deterministic LLMs: Claims and Challenges

23:03
 
اشتراک گذاری
 

Manage episode 507521914 series 3620285
محتوای ارائه شده توسط David Such. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط David Such یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Send us a text

In this episode, we investigate the growing conversation around deterministic large language models (LLMs), models designed to always return the same output for the same input. We contrast this with the more common stochastic LLMs that rely on random sampling and parallel computation, making their outputs variable even with identical prompts.

We explore the engineering efforts aimed at reducing this variability, including recent claims by Thinking Machines about “batch invariance.” While it’s a step forward, some analysts argue it’s overstated as a singular breakthrough. The episode dives into the multiple causes of non-determinism, from floating-point arithmetic and system-level batching to architectural features like Mixture-of-Experts.

We also weigh the pros and cons of determinism. On the plus side: improved debugging, reproducible benchmarks, and greater trust in high-stakes applications like finance or medicine. On the downside: reduced creative output, increased computational overhead, and significant engineering complexity.

Ultimately, we ask: Is true end-to-end determinism a worthwhile goal—or just an ideal that forces too many trade-offs?

Support the show

If you are interested in learning more then please subscribe to the podcast or head over to https://medium.com/@reefwing, where there is lots more content on AI, IoT, robotics, drones, and development. To support us in bringing you this material, you can buy me a coffee or just provide feedback. We love feedback!

  continue reading

53 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 507521914 series 3620285
محتوای ارائه شده توسط David Such. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط David Such یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Send us a text

In this episode, we investigate the growing conversation around deterministic large language models (LLMs), models designed to always return the same output for the same input. We contrast this with the more common stochastic LLMs that rely on random sampling and parallel computation, making their outputs variable even with identical prompts.

We explore the engineering efforts aimed at reducing this variability, including recent claims by Thinking Machines about “batch invariance.” While it’s a step forward, some analysts argue it’s overstated as a singular breakthrough. The episode dives into the multiple causes of non-determinism, from floating-point arithmetic and system-level batching to architectural features like Mixture-of-Experts.

We also weigh the pros and cons of determinism. On the plus side: improved debugging, reproducible benchmarks, and greater trust in high-stakes applications like finance or medicine. On the downside: reduced creative output, increased computational overhead, and significant engineering complexity.

Ultimately, we ask: Is true end-to-end determinism a worthwhile goal—or just an ideal that forces too many trade-offs?

Support the show

If you are interested in learning more then please subscribe to the podcast or head over to https://medium.com/@reefwing, where there is lots more content on AI, IoT, robotics, drones, and development. To support us in bringing you this material, you can buy me a coffee or just provide feedback. We love feedback!

  continue reading

53 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش