Artwork

محتوای ارائه شده توسط Arize AI. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Arize AI یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

LibreEval: The Largest Open Source Benchmark for RAG Hallucination Detection

27:19
 
اشتراک گذاری
 

Manage episode 477771441 series 3448051
محتوای ارائه شده توسط Arize AI. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Arize AI یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

For this week's paper read, we dive into our own research.
We wanted to create a replicable, evolving dataset that can keep pace with model training so that you always know you're testing with data your model has never seen before. We also saw the prohibitively high cost of running LLM evals at scale, and have used our data to fine-tune a series of SLMs that perform just as well as their base LLM counterparts, but at 1/10 the cost.
So, over the past few weeks, the Arize team generated the largest public dataset of hallucinations, as well as a series of fine-tuned evaluation models.
We talk about what we built, the process we took, and the bottom line results. You can read the recap of LibreEval here. Dive into the research, or sign up to join us next time.

Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.

  continue reading

52 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 477771441 series 3448051
محتوای ارائه شده توسط Arize AI. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Arize AI یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

For this week's paper read, we dive into our own research.
We wanted to create a replicable, evolving dataset that can keep pace with model training so that you always know you're testing with data your model has never seen before. We also saw the prohibitively high cost of running LLM evals at scale, and have used our data to fine-tune a series of SLMs that perform just as well as their base LLM counterparts, but at 1/10 the cost.
So, over the past few weeks, the Arize team generated the largest public dataset of hallucinations, as well as a series of fine-tuned evaluation models.
We talk about what we built, the process we took, and the bottom line results. You can read the recap of LibreEval here. Dive into the research, or sign up to join us next time.

Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.

  continue reading

52 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش