Artwork

محتوای ارائه شده توسط Charles M Wood. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Charles M Wood یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

Hyperparameter Tuning for Machine Learning Models - ML 079

51:59
 
اشتراک گذاری
 

Manage episode 333962568 series 2977446
محتوای ارائه شده توسط Charles M Wood. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Charles M Wood یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
When developing ML models, defining and selecting the model architecture will be fundamental to ensure the best possible outcomes. Parameters that define the model architecture are referred to as hyperparameters and the process of searching for the ideal model architecture is referred to as hyperparameter tuning. Today on the show, Ben and Michael discuss hyperparameter tuning and how to implement this into your ML modeling.
In this episode…
  1. Why do we tune?
  2. Optimizing the models
  3. Hyperparameter tuning
  4. Steps for tuning
  5. Data splits
  6. Linear based models
  7. How do you know when you know enough?
  8. Basic rules of thumb
  9. Buffer in time for spikes
  10. Grid searching and automation

Sponsors
Advertising Inquiries: https://redcircle.com/brands
Privacy & Opt-Out: https://redcircle.com/privacy
Become a supporter of this podcast: https://www.spreaker.com/podcast/adventures-in-machine-learning--6102041/support.
  continue reading

209 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 333962568 series 2977446
محتوای ارائه شده توسط Charles M Wood. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Charles M Wood یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
When developing ML models, defining and selecting the model architecture will be fundamental to ensure the best possible outcomes. Parameters that define the model architecture are referred to as hyperparameters and the process of searching for the ideal model architecture is referred to as hyperparameter tuning. Today on the show, Ben and Michael discuss hyperparameter tuning and how to implement this into your ML modeling.
In this episode…
  1. Why do we tune?
  2. Optimizing the models
  3. Hyperparameter tuning
  4. Steps for tuning
  5. Data splits
  6. Linear based models
  7. How do you know when you know enough?
  8. Basic rules of thumb
  9. Buffer in time for spikes
  10. Grid searching and automation

Sponsors
Advertising Inquiries: https://redcircle.com/brands
Privacy & Opt-Out: https://redcircle.com/privacy
Become a supporter of this podcast: https://www.spreaker.com/podcast/adventures-in-machine-learning--6102041/support.
  continue reading

209 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش