Artwork

محتوای ارائه شده توسط Evan Kirstel. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Evan Kirstel یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

CUDA Everywhere: How Spectral Compute is Democratizing GPU Programming

18:23
 
اشتراک گذاری
 

Manage episode 501810047 series 3499431
محتوای ارائه شده توسط Evan Kirstel. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Evan Kirstel یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Interested in being a guest? Email us at [email protected]

What if you could run CUDA code on AMD hardware without changing a single line of code? This groundbreaking possibility is now reality thanks to Spectral Compute's Scale compiler, which we explore in depth with founder Chris in this eye-opening conversation.
Born from frustration with cross-platform GPU programming limitations, Scale represents seven years of dedicated compiler development that allows developers to simply recompile their existing CUDA applications for AMD hardware. "Keep your code exactly how it is. Just recompile it," explains Chris, highlighting how Scale eliminates the painful process of rewriting code with tools like HIP that never quite deliver perfect compatibility.
The technical achievement is remarkable – bridging fundamental architectural differences that neither NVIDIA nor AMD have incentive to address themselves. While NVIDIA benefits from CUDA's effective monopoly and AMD pushes their HIP alternative, Spectral Compute has created the missing technology that allows developers to treat GPUs more like CPUs, where code works across vendors without compromise.
Scale currently shines with traditional high-performance computing workloads like fluid dynamics, sometimes outperforming AMD's native solutions. The team is actively enhancing AI workload support, particularly around matrix multiplication operations, with full PyTorch compatibility targeted for early 2023. They're also expanding hardware support beyond AMD's current lineup, even supporting GPUs that AMD themselves have abandoned.
With a thoughtful business model that offers Scale free for consumer cards and academic use (charging only for data center deployments), Spectral Compute has created an accessible path away from vendor lock-in without sacrificing performance or compatibility. For organizations seeking more hardware options without the pain of code rewrites, Scale represents a compelling alternative that could transform the GPU computing landscape.

Support the show

More at https://linktr.ee/EvanKirstel

  continue reading

فصل ها

1. Introduction to Spectral Compute (00:00:00)

2. Origins of Scale and CUDA on AMD (00:01:28)

3. How Scale Works Without Code Changes (00:04:15)

4. Scale vs. Translation Tools Like HIP (00:08:03)

5. Current Applications and Future Direction (00:11:54)

6. Upcoming Releases and Product Roadmap (00:15:50)

511 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 501810047 series 3499431
محتوای ارائه شده توسط Evan Kirstel. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Evan Kirstel یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Interested in being a guest? Email us at [email protected]

What if you could run CUDA code on AMD hardware without changing a single line of code? This groundbreaking possibility is now reality thanks to Spectral Compute's Scale compiler, which we explore in depth with founder Chris in this eye-opening conversation.
Born from frustration with cross-platform GPU programming limitations, Scale represents seven years of dedicated compiler development that allows developers to simply recompile their existing CUDA applications for AMD hardware. "Keep your code exactly how it is. Just recompile it," explains Chris, highlighting how Scale eliminates the painful process of rewriting code with tools like HIP that never quite deliver perfect compatibility.
The technical achievement is remarkable – bridging fundamental architectural differences that neither NVIDIA nor AMD have incentive to address themselves. While NVIDIA benefits from CUDA's effective monopoly and AMD pushes their HIP alternative, Spectral Compute has created the missing technology that allows developers to treat GPUs more like CPUs, where code works across vendors without compromise.
Scale currently shines with traditional high-performance computing workloads like fluid dynamics, sometimes outperforming AMD's native solutions. The team is actively enhancing AI workload support, particularly around matrix multiplication operations, with full PyTorch compatibility targeted for early 2023. They're also expanding hardware support beyond AMD's current lineup, even supporting GPUs that AMD themselves have abandoned.
With a thoughtful business model that offers Scale free for consumer cards and academic use (charging only for data center deployments), Spectral Compute has created an accessible path away from vendor lock-in without sacrificing performance or compatibility. For organizations seeking more hardware options without the pain of code rewrites, Scale represents a compelling alternative that could transform the GPU computing landscape.

Support the show

More at https://linktr.ee/EvanKirstel

  continue reading

فصل ها

1. Introduction to Spectral Compute (00:00:00)

2. Origins of Scale and CUDA on AMD (00:01:28)

3. How Scale Works Without Code Changes (00:04:15)

4. Scale vs. Translation Tools Like HIP (00:08:03)

5. Current Applications and Future Direction (00:11:54)

6. Upcoming Releases and Product Roadmap (00:15:50)

511 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش