Artwork

محتوای ارائه شده توسط Hugo Bowne-Anderson. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Hugo Bowne-Anderson یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

Episode 3: Language Tech For All

1:32:33
 
اشتراک گذاری
 

Manage episode 321519813 series 3317544
محتوای ارائه شده توسط Hugo Bowne-Anderson. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Hugo Bowne-Anderson یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Rachael Tatman is a senior developer advocate for Rasa, where she’s helping developers build and deploy ML chatbots using their open source framework.

Rachael has a PhD in Linguistics from the University of Washington where her research was on computational sociolinguistics, or how our social identity affects the way we use language in computational contexts. Previously she was a data scientist at Kaggle and she’s still a Kaggle Grandmaster.

In this conversation, Rachael and I talk about the history of NLP and conversational AI//chatbots and we dive into the fascinating tension between rule-based techniques and ML and deep learning – we also talk about how to incorporate machine and human intelligence together by thinking through questions such as “should a response to a human ever be automated?” Spoiler alert: the answer is a resounding NO WAY!

In this journey, something that becomes apparent is that many of the trends, concepts, questions, and answers, although framed for NLP and chatbots, are applicable to much of data science, more generally.

We also discuss the data scientist’s responsibility to end-users and stakeholders using, among other things, the lens of considering those whose data you’re working with to be data donors.

We then consider what globalized language technology looks like and can look like, what we can learn from the history of science here, particularly given that so much training data and models are in English when it accounts for so little of language spoken globally.

Links

  continue reading

62 قسمت

Artwork

Episode 3: Language Tech For All

Vanishing Gradients

24 subscribers

published

iconاشتراک گذاری
 
Manage episode 321519813 series 3317544
محتوای ارائه شده توسط Hugo Bowne-Anderson. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Hugo Bowne-Anderson یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Rachael Tatman is a senior developer advocate for Rasa, where she’s helping developers build and deploy ML chatbots using their open source framework.

Rachael has a PhD in Linguistics from the University of Washington where her research was on computational sociolinguistics, or how our social identity affects the way we use language in computational contexts. Previously she was a data scientist at Kaggle and she’s still a Kaggle Grandmaster.

In this conversation, Rachael and I talk about the history of NLP and conversational AI//chatbots and we dive into the fascinating tension between rule-based techniques and ML and deep learning – we also talk about how to incorporate machine and human intelligence together by thinking through questions such as “should a response to a human ever be automated?” Spoiler alert: the answer is a resounding NO WAY!

In this journey, something that becomes apparent is that many of the trends, concepts, questions, and answers, although framed for NLP and chatbots, are applicable to much of data science, more generally.

We also discuss the data scientist’s responsibility to end-users and stakeholders using, among other things, the lens of considering those whose data you’re working with to be data donors.

We then consider what globalized language technology looks like and can look like, what we can learn from the history of science here, particularly given that so much training data and models are in English when it accounts for so little of language spoken globally.

Links

  continue reading

62 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش