Artwork

محتوای ارائه شده توسط TWIML and Sam Charrington. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط TWIML and Sam Charrington یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

Scaling Up Test-Time Compute with Latent Reasoning with Jonas Geiping - #723

58:38
 
اشتراک گذاری
 

Manage episode 471860280 series 2355587
محتوای ارائه شده توسط TWIML and Sam Charrington. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط TWIML and Sam Charrington یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Today, we're joined by Jonas Geiping, research group leader at Ellis Institute and the Max Planck Institute for Intelligent Systems to discuss his recent paper, “Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach.” This paper proposes a novel language model architecture which uses recurrent depth to enable “thinking in latent space.” We dig into “internal reasoning” versus “verbalized reasoning”—analogous to non-verbalized and verbalized thinking in humans, and discuss how the model searches in latent space to predict the next token and dynamically allocates more compute based on token difficulty. We also explore how the recurrent depth architecture simplifies LLMs, the parallels to diffusion models, the model's performance on reasoning tasks, the challenges of comparing models with varying compute budgets, and architectural advantages such as zero-shot adaptive exits and natural speculative decoding.

The complete show notes for this episode can be found at https://twimlai.com/go/723.

  continue reading

755 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 471860280 series 2355587
محتوای ارائه شده توسط TWIML and Sam Charrington. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط TWIML and Sam Charrington یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Today, we're joined by Jonas Geiping, research group leader at Ellis Institute and the Max Planck Institute for Intelligent Systems to discuss his recent paper, “Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach.” This paper proposes a novel language model architecture which uses recurrent depth to enable “thinking in latent space.” We dig into “internal reasoning” versus “verbalized reasoning”—analogous to non-verbalized and verbalized thinking in humans, and discuss how the model searches in latent space to predict the next token and dynamically allocates more compute based on token difficulty. We also explore how the recurrent depth architecture simplifies LLMs, the parallels to diffusion models, the model's performance on reasoning tasks, the challenges of comparing models with varying compute budgets, and architectural advantages such as zero-shot adaptive exits and natural speculative decoding.

The complete show notes for this episode can be found at https://twimlai.com/go/723.

  continue reading

755 قسمت

Tất cả các tập

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش