1,753 subscribers
با برنامه Player FM !
An Agentic Mixture of Experts for DevOps with Sunil Mallya - #708
Manage episode 448517616 series 2355587
Today we're joined by Sunil Mallya, CTO and co-founder of Flip AI. We discuss Flip’s incident debugging system for DevOps, which was built using a custom mixture of experts (MoE) large language model (LLM) trained on a novel "CoMELT" observability dataset which combines traditional MELT data—metrics, events, logs, and traces—with code to efficiently identify root failure causes in complex software systems. We discuss the challenges of integrating time-series data with LLMs and their multi-decoder architecture designed for this purpose. Sunil describes their system's agent-based design, focusing on clear roles and boundaries to ensure reliability. We examine their "chaos gym," a reinforcement learning environment used for testing and improving the system's robustness. Finally, we discuss the practical considerations of deploying such a system at scale in diverse environments and much more.
The complete show notes for this episode can be found at https://twimlai.com/go/708.
748 قسمت
An Agentic Mixture of Experts for DevOps with Sunil Mallya - #708
The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)
Manage episode 448517616 series 2355587
Today we're joined by Sunil Mallya, CTO and co-founder of Flip AI. We discuss Flip’s incident debugging system for DevOps, which was built using a custom mixture of experts (MoE) large language model (LLM) trained on a novel "CoMELT" observability dataset which combines traditional MELT data—metrics, events, logs, and traces—with code to efficiently identify root failure causes in complex software systems. We discuss the challenges of integrating time-series data with LLMs and their multi-decoder architecture designed for this purpose. Sunil describes their system's agent-based design, focusing on clear roles and boundaries to ensure reliability. We examine their "chaos gym," a reinforcement learning environment used for testing and improving the system's robustness. Finally, we discuss the practical considerations of deploying such a system at scale in diverse environments and much more.
The complete show notes for this episode can be found at https://twimlai.com/go/708.
748 قسمت
כל הפרקים
×





1 Exploring the Biology of LLMs with Circuit Tracing with Emmanuel Ameisen - #727 1:34:06




1 Waymo's Foundation Model for Autonomous Driving with Drago Anguelov - #725 1:09:07






1 Imagine while Reasoning in Space: Multimodal Visualization-of-Thought with Chengzu Li - #722 42:11


1 Inside s1: An o1-Style Reasoning Model That Cost Under $50 to Train with Niklas Muennighoff - #721 49:29


1 Accelerating AI Training and Inference with AWS Trainium2 with Ron Diamant - #720 1:07:05




1 AI Trends 2025: AI Agents and Multi-Agent Systems with Victor Dibia - #718 1:44:59


1 Speculative Decoding and Efficient LLM Inference with Chris Lott - #717 1:16:30




به Player FM خوش آمدید!
Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.