Artwork

محتوای ارائه شده توسط MapScaping. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط MapScaping یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

Telematics Data is Reshaping Our Understanding of Road Networks

58:52
 
اشتراک گذاری
 

Manage episode 460092900 series 2502116
محتوای ارائه شده توسط MapScaping. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط MapScaping یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Telematics Data is Reshaping Our Understanding of Road Networks

In this episode MIT Professor Hari Balakrishnan explains how Cambridge Mobile Telematics (CMT) is transforming traditional road network analysis by layering dynamic behavioural data onto static map geometries.

Telematics data creates "living maps" that go beyond traditional road geometry and attributes. By collecting movement data from 45 million users through phones and IoT devices, CMT has developed sophisticated models that can:

- Generate dynamic risk maps showing crash probability for every road segment globally
- Detect infrastructure issues that aren't visible in traditional mapping (like poorly placed bus stops)
- Validate and correct map attributes like speed limits and lane connectivity
- Differentiate between overpasses and intersections using movement patterns
- Create contextual understanding of road segments based on actual usage patterns

Particularly interesting for GIS professionals is CMT's approach to data fusion, combining traditional map geometry with temporal movement data to create predictive models. This has practical applications from infrastructure planning to autonomous vehicle navigation, where understanding the cultural context of road usage proves as important as precise geometry.

The episode challenges traditional static approaches to road network mapping, suggesting that the future lies in dynamic, behavior-informed spatial data models that can adapt to changing conditions and usage patterns.

For anyone working with transportation networks or smart city initiatives, this episode provides valuable insights into how movement data is changing our understanding of road infrastructure and spatial behaviour.

Connect with Hari on LinkedIn!

https://www.linkedin.com/in/hari-balakrishnan-0702263/

Cambridge Mobile Telematics

https://www.cmtelematics.com/

BTW, I keep busy creating free mapping tools and publishing them there

https://mapscaping.com/map-tools/ swing by and take a look!

  continue reading

240 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 460092900 series 2502116
محتوای ارائه شده توسط MapScaping. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط MapScaping یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Telematics Data is Reshaping Our Understanding of Road Networks

In this episode MIT Professor Hari Balakrishnan explains how Cambridge Mobile Telematics (CMT) is transforming traditional road network analysis by layering dynamic behavioural data onto static map geometries.

Telematics data creates "living maps" that go beyond traditional road geometry and attributes. By collecting movement data from 45 million users through phones and IoT devices, CMT has developed sophisticated models that can:

- Generate dynamic risk maps showing crash probability for every road segment globally
- Detect infrastructure issues that aren't visible in traditional mapping (like poorly placed bus stops)
- Validate and correct map attributes like speed limits and lane connectivity
- Differentiate between overpasses and intersections using movement patterns
- Create contextual understanding of road segments based on actual usage patterns

Particularly interesting for GIS professionals is CMT's approach to data fusion, combining traditional map geometry with temporal movement data to create predictive models. This has practical applications from infrastructure planning to autonomous vehicle navigation, where understanding the cultural context of road usage proves as important as precise geometry.

The episode challenges traditional static approaches to road network mapping, suggesting that the future lies in dynamic, behavior-informed spatial data models that can adapt to changing conditions and usage patterns.

For anyone working with transportation networks or smart city initiatives, this episode provides valuable insights into how movement data is changing our understanding of road infrastructure and spatial behaviour.

Connect with Hari on LinkedIn!

https://www.linkedin.com/in/hari-balakrishnan-0702263/

Cambridge Mobile Telematics

https://www.cmtelematics.com/

BTW, I keep busy creating free mapping tools and publishing them there

https://mapscaping.com/map-tools/ swing by and take a look!

  continue reading

240 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش