Artwork

محتوای ارائه شده توسط BB. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط BB یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

Say Goodbye to Human Feedback: This AI Teaches Itself to Build Interfaces!

18:11
 
اشتراک گذاری
 

Manage episode 501061982 series 3664002
محتوای ارائه شده توسط BB. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط BB یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Send us a text

In this episode, we explore UICoder, a new research project that teaches large language models to generate user interface code—without human supervision. Traditionally, building a functional app interface requires developers, designers, and countless hours of testing. But UICoder flips this process on its head: instead of relying on expensive human feedback, it learns from its own mistakes through a fully automated feedback loop.

Here’s how it works. The system generates huge amounts of SwiftUI code, then automatically checks whether that code actually runs and whether the resulting interface matches expectations. Compilers act as strict teachers, catching errors, while vision–language models judge whether the design looks correct. Bad examples get filtered out, strong ones are scored and improved, and the model gradually fine-tunes itself with cleaner, higher-quality data.

The results are impressive. Starting from StarChat-Beta, a model with virtually no knowledge of SwiftUI, UICoder created nearly one million synthetic programs in just a few iterations. After training on this self-curated dataset, it reached performance levels close to GPT-4—and even outperformed GPT-4 in compilation success rates. In other words, it doesn’t just write more code, it writes code that actually works.

We’ll break down what this means for developers, designers, and anyone building digital products. Is this the beginning of AI systems that can autonomously prototype and refine interfaces? Could this reshape how apps are built, lowering the barrier for solo creators and startups? And what happens when machines become their own best teachers?

  continue reading

11 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 501061982 series 3664002
محتوای ارائه شده توسط BB. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط BB یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Send us a text

In this episode, we explore UICoder, a new research project that teaches large language models to generate user interface code—without human supervision. Traditionally, building a functional app interface requires developers, designers, and countless hours of testing. But UICoder flips this process on its head: instead of relying on expensive human feedback, it learns from its own mistakes through a fully automated feedback loop.

Here’s how it works. The system generates huge amounts of SwiftUI code, then automatically checks whether that code actually runs and whether the resulting interface matches expectations. Compilers act as strict teachers, catching errors, while vision–language models judge whether the design looks correct. Bad examples get filtered out, strong ones are scored and improved, and the model gradually fine-tunes itself with cleaner, higher-quality data.

The results are impressive. Starting from StarChat-Beta, a model with virtually no knowledge of SwiftUI, UICoder created nearly one million synthetic programs in just a few iterations. After training on this self-curated dataset, it reached performance levels close to GPT-4—and even outperformed GPT-4 in compilation success rates. In other words, it doesn’t just write more code, it writes code that actually works.

We’ll break down what this means for developers, designers, and anyone building digital products. Is this the beginning of AI systems that can autonomously prototype and refine interfaces? Could this reshape how apps are built, lowering the barrier for solo creators and startups? And what happens when machines become their own best teachers?

  continue reading

11 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش