Artwork

محتوای ارائه شده توسط The Data Flowcast. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط The Data Flowcast یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

Inside the Custom Framework for Managing Airflow Code at Wix with Gil Reich

31:02
 
اشتراک گذاری
 

Manage episode 485580771 series 2948506
محتوای ارائه شده توسط The Data Flowcast. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط The Data Flowcast یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Efficient orchestration and maintainability are crucial for data engineering at scale. Gil Reich, Data Developer for Data Science at Wix, shares how his team reduced code duplication, standardized pipelines, and improved Airflow task orchestration using a Python-based framework built within the data science team.

In this episode, Gil explains how this internal framework simplifies DAG creation, improves documentation accuracy, and enables consistent task generation for machine learning pipelines. He also shares lessons from complex DAG optimization and maintaining testable code.

Key Takeaways:

(03:23) Code duplication creates long-term problems.

(08:16) Frameworks bring order to complex pipelines.

(09:41) Shared functions cut down repetitive code.

(17:18) Auto-generated docs stay accurate by design.

(22:40) On-demand DAGs support real-time workflows.

(25:08) Task-level sensors improve run efficiency.

(27:40) Combine local runs with automated tests.

(30:09) Clean code helps teams scale faster.

Resources Mentioned:

Gil Reich

https://www.linkedin.com/in/gilreich/

Wix | LinkedIn

https://www.linkedin.com/company/wix-com/

Wix | Website

https://www.wix.com/

DS DAG Framework

https://airflowsummit.org/slides/2024/92-refactoring-dags.pdf

Apache Airflow

https://airflow.apache.org/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

63 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 485580771 series 2948506
محتوای ارائه شده توسط The Data Flowcast. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط The Data Flowcast یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Efficient orchestration and maintainability are crucial for data engineering at scale. Gil Reich, Data Developer for Data Science at Wix, shares how his team reduced code duplication, standardized pipelines, and improved Airflow task orchestration using a Python-based framework built within the data science team.

In this episode, Gil explains how this internal framework simplifies DAG creation, improves documentation accuracy, and enables consistent task generation for machine learning pipelines. He also shares lessons from complex DAG optimization and maintaining testable code.

Key Takeaways:

(03:23) Code duplication creates long-term problems.

(08:16) Frameworks bring order to complex pipelines.

(09:41) Shared functions cut down repetitive code.

(17:18) Auto-generated docs stay accurate by design.

(22:40) On-demand DAGs support real-time workflows.

(25:08) Task-level sensors improve run efficiency.

(27:40) Combine local runs with automated tests.

(30:09) Clean code helps teams scale faster.

Resources Mentioned:

Gil Reich

https://www.linkedin.com/in/gilreich/

Wix | LinkedIn

https://www.linkedin.com/company/wix-com/

Wix | Website

https://www.wix.com/

DS DAG Framework

https://airflowsummit.org/slides/2024/92-refactoring-dags.pdf

Apache Airflow

https://airflow.apache.org/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

63 قسمت

Tất cả các tập

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش