Artwork

محتوای ارائه شده توسط The Data Flowcast. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط The Data Flowcast یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

AI-Powered Vehicle Automation at Ford Motor Company with Serjesh Sharma

26:11
 
اشتراک گذاری
 

Manage episode 439652095 series 2948506
محتوای ارائه شده توسط The Data Flowcast. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط The Data Flowcast یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Harnessing data at scale is the key to driving innovation in autonomous vehicle technology. In this episode, we uncover how advanced orchestration tools are transforming machine learning operations in the automotive industry. Serjesh Sharma, Supervisor ADAS Machine Learning Operations (MLOps) at Ford Motor Company, joins us to discuss the challenges and innovations his team faces working to enhance vehicle safety and automation. Serjesh shares insights into the intricate data processes that support Ford’s Advanced Driver Assistance Systems (ADAS) and how his team leverages Apache Airflow to manage massive data loads efficiently. Key Takeaways: (01:44) ADAS involves advanced features like pre-collision assist and self-driving capabilities. (04:47) Ensuring sensor accuracy and vehicle safety requires extensive data processing. (05:08) The combination of on-prem and cloud infrastructure optimizes data handling. (09:27) Ford processes around one petabyte of data per week, using both CPUs and GPUs. (10:33) Implementing software engineering best practices to improve scalability and reliability. (15:18) GitHub Issues streamline onboarding and infrastructure provisioning. (17:00) Airflow's modular design allows Ford to manage complex data pipelines. (19:00) Kubernetes pod operators help optimize resource usage for CPU-intensive tasks. (20:35) Ford's scale challenges led to customized Airflow configurations for high concurrency. (21:02) Advanced orchestration tools are pivotal in managing vast data landscapes in automotive innovation. Resources Mentioned: Serjesh Sharma - www.linkedin.com/in/serjeshsharma/ Ford Motor Company - www.linkedin.com/company/ford-motor-company/ Apache Airflow - airflow.apache.org/ Kubernetes - kubernetes.io/ Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations. #AI #Automation #Airflow #MachineLearning
  continue reading

34 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 439652095 series 2948506
محتوای ارائه شده توسط The Data Flowcast. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط The Data Flowcast یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Harnessing data at scale is the key to driving innovation in autonomous vehicle technology. In this episode, we uncover how advanced orchestration tools are transforming machine learning operations in the automotive industry. Serjesh Sharma, Supervisor ADAS Machine Learning Operations (MLOps) at Ford Motor Company, joins us to discuss the challenges and innovations his team faces working to enhance vehicle safety and automation. Serjesh shares insights into the intricate data processes that support Ford’s Advanced Driver Assistance Systems (ADAS) and how his team leverages Apache Airflow to manage massive data loads efficiently. Key Takeaways: (01:44) ADAS involves advanced features like pre-collision assist and self-driving capabilities. (04:47) Ensuring sensor accuracy and vehicle safety requires extensive data processing. (05:08) The combination of on-prem and cloud infrastructure optimizes data handling. (09:27) Ford processes around one petabyte of data per week, using both CPUs and GPUs. (10:33) Implementing software engineering best practices to improve scalability and reliability. (15:18) GitHub Issues streamline onboarding and infrastructure provisioning. (17:00) Airflow's modular design allows Ford to manage complex data pipelines. (19:00) Kubernetes pod operators help optimize resource usage for CPU-intensive tasks. (20:35) Ford's scale challenges led to customized Airflow configurations for high concurrency. (21:02) Advanced orchestration tools are pivotal in managing vast data landscapes in automotive innovation. Resources Mentioned: Serjesh Sharma - www.linkedin.com/in/serjeshsharma/ Ford Motor Company - www.linkedin.com/company/ford-motor-company/ Apache Airflow - airflow.apache.org/ Kubernetes - kubernetes.io/ Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations. #AI #Automation #Airflow #MachineLearning
  continue reading

34 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع