

حمایت شده
This story was originally published on HackerNoon at: https://hackernoon.com/privacy-preserving-computation-of-fairness-for-ml-systems-acknowledgement-and-references.
Discover Fairness as a Service (FaaS), an architecture and protocol ensuring algorithmic fairness without exposing the original dataset or model details.
Check more stories related to tech-stories at: https://hackernoon.com/c/tech-stories. You can also check exclusive content about #ml-systems, #ml-fairness, #faas, #fairness-in-ai, #fairness-as-a-service, #fair-machine-learning, #fairness-computation, #cryptograms, and more.
This story was written by: @ashumerie. Learn more about this writer by checking @ashumerie's about page, and for more stories, please visit hackernoon.com.
Fairness as a Service (FaaS) revolutionizes algorithmic fairness audits by preserving privacy without accessing original datasets or model specifics. This paper presents FaaS as a trustworthy framework employing encrypted cryptograms and Zero Knowledge Proofs. Security guarantees, a proof-of-concept implementation, and performance experiments showcase FaaS as a promising avenue for calculating and verifying fairness in AI algorithms, addressing challenges in privacy, trust, and performance.
301 قسمت
This story was originally published on HackerNoon at: https://hackernoon.com/privacy-preserving-computation-of-fairness-for-ml-systems-acknowledgement-and-references.
Discover Fairness as a Service (FaaS), an architecture and protocol ensuring algorithmic fairness without exposing the original dataset or model details.
Check more stories related to tech-stories at: https://hackernoon.com/c/tech-stories. You can also check exclusive content about #ml-systems, #ml-fairness, #faas, #fairness-in-ai, #fairness-as-a-service, #fair-machine-learning, #fairness-computation, #cryptograms, and more.
This story was written by: @ashumerie. Learn more about this writer by checking @ashumerie's about page, and for more stories, please visit hackernoon.com.
Fairness as a Service (FaaS) revolutionizes algorithmic fairness audits by preserving privacy without accessing original datasets or model specifics. This paper presents FaaS as a trustworthy framework employing encrypted cryptograms and Zero Knowledge Proofs. Security guarantees, a proof-of-concept implementation, and performance experiments showcase FaaS as a promising avenue for calculating and verifying fairness in AI algorithms, addressing challenges in privacy, trust, and performance.
301 قسمت
Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.