
با برنامه Player FM !
Kai Arulkumaran
Manage episode 287496084 series 2536330
Kai Arulkumaran is a researcher at Araya in Tokyo.
Featured References
AlphaStar: An Evolutionary Computation Perspective
Kai Arulkumaran, Antoine Cully, Julian Togelius
Analysing Deep Reinforcement Learning Agents Trained with Domain Randomisation
Tianhong Dai, Kai Arulkumaran, Tamara Gerbert, Samyakh Tukra, Feryal Behbahani, Anil Anthony Bharath
Training Agents using Upside-Down Reinforcement Learning
Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaśkowski, Jürgen Schmidhuber
Additional References
- Araya
- NNAISENSE
- Kai Arulkumaran on Google Scholar
- https://github.com/Kaixhin/rlenvs
- https://github.com/Kaixhin/Atari
- https://github.com/Kaixhin/Rainbow
- Tschiatschek, S., Arulkumaran, K., Stühmer, J. & Hofmann, K. (2018). Variational Inference for Data-Efficient Model Learning in POMDPs. arXiv:1805.09281.
- Arulkumaran, K., Dilokthanakul, N., Shanahan, M. & Bharath, A. A. (2016). Classifying Options for Deep Reinforcement Learning. International Joint Conference on Artificial Intelligence, Deep Reinforcement Learning Workshop.
- Garnelo, M., Arulkumaran, K. & Shanahan, M. (2016). Towards Deep Symbolic Reinforcement Learning. Annual Conference on Neural Information Processing Systems, Deep Reinforcement Learning Workshop.
- Arulkumaran, K., Deisenroth, M. P., Brundage, M. & Bharath, A. A. (2017). Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine.
- Agostinelli, A., Arulkumaran, K., Sarrico, M., Richemond, P. & Bharath, A. A. (2019). Memory-Efficient Episodic Control Reinforcement Learning with Dynamic Online k-means. Annual Conference on Neural Information Processing Systems, Workshop on Biological and Artificial Reinforcement Learning.
- Sarrico, M., Arulkumaran, K., Agostinelli, A., Richemond, P. & Bharath, A. A. (2019). Sample-Efficient Reinforcement Learning with Maximum Entropy Mellowmax Episodic Control. Annual Conference on Neural Information Processing Systems, Workshop on Biological and Artificial Reinforcement Learning.
73 قسمت
Manage episode 287496084 series 2536330
Kai Arulkumaran is a researcher at Araya in Tokyo.
Featured References
AlphaStar: An Evolutionary Computation Perspective
Kai Arulkumaran, Antoine Cully, Julian Togelius
Analysing Deep Reinforcement Learning Agents Trained with Domain Randomisation
Tianhong Dai, Kai Arulkumaran, Tamara Gerbert, Samyakh Tukra, Feryal Behbahani, Anil Anthony Bharath
Training Agents using Upside-Down Reinforcement Learning
Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaśkowski, Jürgen Schmidhuber
Additional References
- Araya
- NNAISENSE
- Kai Arulkumaran on Google Scholar
- https://github.com/Kaixhin/rlenvs
- https://github.com/Kaixhin/Atari
- https://github.com/Kaixhin/Rainbow
- Tschiatschek, S., Arulkumaran, K., Stühmer, J. & Hofmann, K. (2018). Variational Inference for Data-Efficient Model Learning in POMDPs. arXiv:1805.09281.
- Arulkumaran, K., Dilokthanakul, N., Shanahan, M. & Bharath, A. A. (2016). Classifying Options for Deep Reinforcement Learning. International Joint Conference on Artificial Intelligence, Deep Reinforcement Learning Workshop.
- Garnelo, M., Arulkumaran, K. & Shanahan, M. (2016). Towards Deep Symbolic Reinforcement Learning. Annual Conference on Neural Information Processing Systems, Deep Reinforcement Learning Workshop.
- Arulkumaran, K., Deisenroth, M. P., Brundage, M. & Bharath, A. A. (2017). Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine.
- Agostinelli, A., Arulkumaran, K., Sarrico, M., Richemond, P. & Bharath, A. A. (2019). Memory-Efficient Episodic Control Reinforcement Learning with Dynamic Online k-means. Annual Conference on Neural Information Processing Systems, Workshop on Biological and Artificial Reinforcement Learning.
- Sarrico, M., Arulkumaran, K., Agostinelli, A., Richemond, P. & Bharath, A. A. (2019). Sample-Efficient Reinforcement Learning with Maximum Entropy Mellowmax Episodic Control. Annual Conference on Neural Information Processing Systems, Workshop on Biological and Artificial Reinforcement Learning.
73 قسمت
Tüm bölümler
×به Player FM خوش آمدید!
Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.