Artwork

محتوای ارائه شده توسط Universite Paris 1 Pantheon-Sorbonne. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Universite Paris 1 Pantheon-Sorbonne یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

3.2 Regularization Methods for Categorical Predictors (Gerhard Tutz)

53:33
 
اشتراک گذاری
 

بایگانی مجموعه ها ("فیدهای غیر فعال" status)

When? This feed was archived on June 29, 2023 09:11 (2y ago). Last successful fetch was on August 01, 2022 18:06 (3y ago)

Why? فیدهای غیر فعال status. سرورهای ما، برای یک دوره پایدار، قادر به بازیابی یک فید پادکست معتبر نبوده اند.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 188707050 series 1600644
محتوای ارائه شده توسط Universite Paris 1 Pantheon-Sorbonne. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Universite Paris 1 Pantheon-Sorbonne یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
The majority of regularization methods in regression analysis has been designed for metric predictors and can not be used for categorical predictors. A rare exception is the group lasso which allows for categorical predictors or factors. We will consider alternative approaches based on penalized likelihood and boosting techniques. Typically the operating model will be a generalized linear model. We will start with ordered categorical predictors which unfortunately are often treated as metric variables because software is available. It is shown how difference penalties on adjacent dummy coefficients can be used to obtain smooth effect curves that can be estimated also in cases where simple maximum likelihood methods fail. The difference penalty turns out to be highly competitive when compared to methods often seen in practice, namely simple linear regression on the group labels and pure dummy coding. In a second step L1-penalty based methods that enforce variable selection and clustering of categories are presented and investigated. It is distinguished between ordered predictors where clustering refers to the fusion of adjacent categories and nominal predictors for which arbitrary categories can be fused. The methods allow to identify which categories do actually differ with respect to the dependent variable. Finally interaction effects are modeled within the framework of varying coefficients models. For the proposed methods properties of the estimators are investigated. Methods are illustrated and compared in simulation studies and applied to real world data.
  continue reading

12 قسمت

Artwork
iconاشتراک گذاری
 

بایگانی مجموعه ها ("فیدهای غیر فعال" status)

When? This feed was archived on June 29, 2023 09:11 (2y ago). Last successful fetch was on August 01, 2022 18:06 (3y ago)

Why? فیدهای غیر فعال status. سرورهای ما، برای یک دوره پایدار، قادر به بازیابی یک فید پادکست معتبر نبوده اند.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 188707050 series 1600644
محتوای ارائه شده توسط Universite Paris 1 Pantheon-Sorbonne. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Universite Paris 1 Pantheon-Sorbonne یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
The majority of regularization methods in regression analysis has been designed for metric predictors and can not be used for categorical predictors. A rare exception is the group lasso which allows for categorical predictors or factors. We will consider alternative approaches based on penalized likelihood and boosting techniques. Typically the operating model will be a generalized linear model. We will start with ordered categorical predictors which unfortunately are often treated as metric variables because software is available. It is shown how difference penalties on adjacent dummy coefficients can be used to obtain smooth effect curves that can be estimated also in cases where simple maximum likelihood methods fail. The difference penalty turns out to be highly competitive when compared to methods often seen in practice, namely simple linear regression on the group labels and pure dummy coding. In a second step L1-penalty based methods that enforce variable selection and clustering of categories are presented and investigated. It is distinguished between ordered predictors where clustering refers to the fusion of adjacent categories and nominal predictors for which arbitrary categories can be fused. The methods allow to identify which categories do actually differ with respect to the dependent variable. Finally interaction effects are modeled within the framework of varying coefficients models. For the proposed methods properties of the estimators are investigated. Methods are illustrated and compared in simulation studies and applied to real world data.
  continue reading

12 قسمت

כל הפרקים

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش