Artwork

محتوای ارائه شده توسط Brian Carter. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Brian Carter یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

Where'd My Gradient Go? It Vanished!

8:39
 
اشتراک گذاری
 

Manage episode 446714678 series 3605861
محتوای ارائه شده توسط Brian Carter. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Brian Carter یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

This video discusses the vanishing gradient problem, a significant challenge in training deep neural networks. The speaker explains how, as a neural network becomes deeper, gradients—measures of how changes in network parameters affect the loss function—can decrease exponentially, leading to a situation where early layers of the network are effectively frozen and unable to learn. This problem arises because common activation functions like the sigmoid function can produce very small derivatives, which compound during backpropagation. The video then explores solutions like using different activation functions (like ReLU) and architectural changes (like residual networks and LSTMs) to mitigate this issue.

Watch the video: https://www.youtube.com/watch?v=ncTHBi8a9uA&pp=ygUSdmFuaXNoaW5nIGdyYWRpZW50

  continue reading

71 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 446714678 series 3605861
محتوای ارائه شده توسط Brian Carter. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Brian Carter یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

This video discusses the vanishing gradient problem, a significant challenge in training deep neural networks. The speaker explains how, as a neural network becomes deeper, gradients—measures of how changes in network parameters affect the loss function—can decrease exponentially, leading to a situation where early layers of the network are effectively frozen and unable to learn. This problem arises because common activation functions like the sigmoid function can produce very small derivatives, which compound during backpropagation. The video then explores solutions like using different activation functions (like ReLU) and architectural changes (like residual networks and LSTMs) to mitigate this issue.

Watch the video: https://www.youtube.com/watch?v=ncTHBi8a9uA&pp=ygUSdmFuaXNoaW5nIGdyYWRpZW50

  continue reading

71 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش