Artwork

محتوای ارائه شده توسط Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

The Evolution of GenAI: From GANs to Multi-Agent Systems

43:27
 
اشتراک گذاری
 

Manage episode 436837193 series 2954151
محتوای ارائه شده توسط Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Early Interest in Generative AI

  • Martin's initial exposure to Generative AI in 2016 through a conference talk in Milano, Italy, and his early work with Generative Adversarial Networks (GANs).

Development of GANs and Early Language Models since 2016

  • The evolution of Generative AI from visual content generation to text generation with models like Google's Bard and the increasing popularity of GANs in 2018.

Launch of GenerativeAI.net and Online Course

  • Martin's creation of GenerativeAI.net and an online course, which gained traction after being promoted on platforms like Reddit and Hacker News.

Defining Generative AI

  • Martin’s explanation of Generative AI as a technology focused on generating content, contrasting it with Discriminative AI, which focuses on classification and selection.

Evolution of GenAI Technologies

  • The shift from LSTM models to Transformer models, highlighting key developments like the "Attention Is All You Need" paper and the impact of Transformer architecture on language models.

Impact of Computing Power on GenAI

  • The role of increasing computing power and larger datasets in improving the capabilities of Generative AI

Generative AI in Business Applications

  • Martin’s insights into the real-world applications of GenAI, including customer service automation, marketing, and software development.

Retrieval Augmented Generation (RAG) Architecture

  • The use of RAG architecture in enterprise AI applications, where documents are chunked and queried to provide accurate and relevant responses using large language models.

Technological Drivers of GenAI

  • The advancements in chip design, including Nvidia’s focus on GPU improvements and the emergence of new processing unit architectures like the LPU.

Small vs. Large Language Models

  • A comparison between small and large language models, discussing their relative efficiency, cost, and performance, especially in specific use cases.

Challenges in Implementing GenAI Systems

  • Common challenges faced in deploying GenAI systems, including the costs associated with training and fine-tuning large language models and the importance of clean data.

Measuring GenAI Performance

  • Martin’s explanation of the complexities in measuring the performance of GenAI systems, including the use of the Hallucination Leaderboard for evaluating language models.

Emerging Trends in GenAI

  • Discussion of future trends such as the rise of multi-agent frameworks, the potential for AI-driven humanoid robots, and the path towards Artificial General Intelligence (AGI).

  continue reading

30 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 436837193 series 2954151
محتوای ارائه شده توسط Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Early Interest in Generative AI

  • Martin's initial exposure to Generative AI in 2016 through a conference talk in Milano, Italy, and his early work with Generative Adversarial Networks (GANs).

Development of GANs and Early Language Models since 2016

  • The evolution of Generative AI from visual content generation to text generation with models like Google's Bard and the increasing popularity of GANs in 2018.

Launch of GenerativeAI.net and Online Course

  • Martin's creation of GenerativeAI.net and an online course, which gained traction after being promoted on platforms like Reddit and Hacker News.

Defining Generative AI

  • Martin’s explanation of Generative AI as a technology focused on generating content, contrasting it with Discriminative AI, which focuses on classification and selection.

Evolution of GenAI Technologies

  • The shift from LSTM models to Transformer models, highlighting key developments like the "Attention Is All You Need" paper and the impact of Transformer architecture on language models.

Impact of Computing Power on GenAI

  • The role of increasing computing power and larger datasets in improving the capabilities of Generative AI

Generative AI in Business Applications

  • Martin’s insights into the real-world applications of GenAI, including customer service automation, marketing, and software development.

Retrieval Augmented Generation (RAG) Architecture

  • The use of RAG architecture in enterprise AI applications, where documents are chunked and queried to provide accurate and relevant responses using large language models.

Technological Drivers of GenAI

  • The advancements in chip design, including Nvidia’s focus on GPU improvements and the emergence of new processing unit architectures like the LPU.

Small vs. Large Language Models

  • A comparison between small and large language models, discussing their relative efficiency, cost, and performance, especially in specific use cases.

Challenges in Implementing GenAI Systems

  • Common challenges faced in deploying GenAI systems, including the costs associated with training and fine-tuning large language models and the importance of clean data.

Measuring GenAI Performance

  • Martin’s explanation of the complexities in measuring the performance of GenAI systems, including the use of the Hallucination Leaderboard for evaluating language models.

Emerging Trends in GenAI

  • Discussion of future trends such as the rise of multi-agent frameworks, the potential for AI-driven humanoid robots, and the path towards Artificial General Intelligence (AGI).

  continue reading

30 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش