Artwork

محتوای ارائه شده توسط Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

How AI is Transforming Data Analytics and Visualisation in the Enterprise

1:11:08
 
اشتراک گذاری
 

Manage episode 504351080 series 2954151
محتوای ارائه شده توسط Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Chris Parmer (Chief Product Officer & Co-Founder, Plotly) and Domenic Ravita (VP of Marketing, Plotly) discuss the evolution of AI-powered data analytics and how natural language interfaces are democratizing advanced analytics.

Key Topics Discussed

  1. AI's Market Category Convergence Domenic describes how AI is collapsing traditional boundaries between business intelligence tools (Power BI, Tableau), data science platforms, and AI coding tools, creating a quantum leap similar to the drag-and-drop revolution 20 years ago.
  2. The 30/70 Engineering Reality Chris reveals that LLMs represent only 30% of AI analytics products, with 70% being sophisticated tooling, error correction loops, and multi-agent systems. Raw LLM output succeeds only one-third of the time without extensive supporting infrastructure.
  3. Code-First AI Architecture Plotly's approach generates Python code rather than having AI directly process data, creating more rigorous analytics. The system generates 2,000-5,000 lines of code in under two minutes through parallel processing while maintaining 90%+ accuracy.
  4. Natural Language as Universal Equalizer Discussion of how natural language interfaces eliminate the learning curves of different analytics tools (Salesforce, Tableau, Google Analytics), potentially democratizing data visualization across organizations by providing a common interface.
  5. Vibe Analysis Concept Introduction of "vibe analysis" - the data equivalent of "vibe coding" - enabling fluid, rapid data exploration that keeps analysts in flow states through natural language interactions with AI-powered tools.
  6. Transparency and Trust Building Exploration of building user trust through auto-generated specifications in natural language, transparent logging interfaces, and making underlying code assumptions visible and adjustable to prevent misleading results.
  7. Human-AI Collaboration Balance Chris emphasizes that while AI accelerates visualization creation and data exploration, human interpretation remains essential for generating insights. The risk lies in systems that attempt to "skip to the finish" with fully automated decision-making.
  8. Infrastructure Misconceptions Domenic predicts people will wrongly assume AI analytics requires extensive data warehouses and semantic layers, when effective analysis can work with standard databases and file formats, making advanced analytics more accessible than many realize.

  continue reading

30 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 504351080 series 2954151
محتوای ارائه شده توسط Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Chris Parmer (Chief Product Officer & Co-Founder, Plotly) and Domenic Ravita (VP of Marketing, Plotly) discuss the evolution of AI-powered data analytics and how natural language interfaces are democratizing advanced analytics.

Key Topics Discussed

  1. AI's Market Category Convergence Domenic describes how AI is collapsing traditional boundaries between business intelligence tools (Power BI, Tableau), data science platforms, and AI coding tools, creating a quantum leap similar to the drag-and-drop revolution 20 years ago.
  2. The 30/70 Engineering Reality Chris reveals that LLMs represent only 30% of AI analytics products, with 70% being sophisticated tooling, error correction loops, and multi-agent systems. Raw LLM output succeeds only one-third of the time without extensive supporting infrastructure.
  3. Code-First AI Architecture Plotly's approach generates Python code rather than having AI directly process data, creating more rigorous analytics. The system generates 2,000-5,000 lines of code in under two minutes through parallel processing while maintaining 90%+ accuracy.
  4. Natural Language as Universal Equalizer Discussion of how natural language interfaces eliminate the learning curves of different analytics tools (Salesforce, Tableau, Google Analytics), potentially democratizing data visualization across organizations by providing a common interface.
  5. Vibe Analysis Concept Introduction of "vibe analysis" - the data equivalent of "vibe coding" - enabling fluid, rapid data exploration that keeps analysts in flow states through natural language interactions with AI-powered tools.
  6. Transparency and Trust Building Exploration of building user trust through auto-generated specifications in natural language, transparent logging interfaces, and making underlying code assumptions visible and adjustable to prevent misleading results.
  7. Human-AI Collaboration Balance Chris emphasizes that while AI accelerates visualization creation and data exploration, human interpretation remains essential for generating insights. The risk lies in systems that attempt to "skip to the finish" with fully automated decision-making.
  8. Infrastructure Misconceptions Domenic predicts people will wrongly assume AI analytics requires extensive data warehouses and semantic layers, when effective analysis can work with standard databases and file formats, making advanced analytics more accessible than many realize.

  continue reading

30 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش