Artwork

محتوای ارائه شده توسط Krish Palaniappan and Varun Palaniappan, Krish Palaniappan, and Varun Palaniappan. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Krish Palaniappan and Varun Palaniappan, Krish Palaniappan, and Varun Palaniappan یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

[Paid Course] Snowpal Education: (Weaviate) Open Source Vector Database

1:31
 
اشتراک گذاری
 

Manage episode 456056998 series 3530865
محتوای ارائه شده توسط Krish Palaniappan and Varun Palaniappan, Krish Palaniappan, and Varun Palaniappan. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Krish Palaniappan and Varun Palaniappan, Krish Palaniappan, and Varun Palaniappan یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

In this conversation, Krish Palaniappan introduces Weaviate, an open-source vector database, and explores its functionalities compared to traditional databases. The discussion covers the setup and configuration of Weaviate, hands-on coding examples, and the importance of vectorization and embeddings in AI. The conversation also addresses debugging challenges faced during implementation and concludes with a recap of the key points discussed. Takeaways

  • Weaviate is an open-source vector database designed for AI applications.

  • Vector databases differ fundamentally from traditional databases in data retrieval methods.

  • Understanding vector embeddings is crucial for leveraging vector databases effectively.

  • Hands-on coding examples help illustrate the practical use of Weaviate.

  • Python is often preferred for AI-related programming due to its extensive support.

  • Debugging is an essential part of working with new technologies like Weaviate.

  • Vectorization optimizes database operations for modern CPU architectures.

  • Embedding models can encode various types of unstructured data.

  • The conversation emphasizes co-learning and exploration of new technologies.

  • Future discussions may delve deeper into the capabilities of vector databases.

Chapters

00:00 Introduction to Weaviate and Vector Databases

06:58 Understanding Vector Databases vs Traditional Databases

12:05 Exploring Weaviate: Setup and Configuration

20:32 Hands-On with Weaviate: Coding and Implementation

34:50 Deep Dive into Vectorization and Embeddings

42:15 Debugging and Troubleshooting Weaviate Code

01:20:40 Recap and Future Directions

Purchase course in one of 2 ways:

1. Go to https://getsnowpal.com, and purchase it on the Web

2. On your phone:

(i) If you are an iPhone user, go to http://ios.snowpal.com, and watch the course on the go.

(ii). If you are an Android user, go to http://android.snowpal.com.

  continue reading

209 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 456056998 series 3530865
محتوای ارائه شده توسط Krish Palaniappan and Varun Palaniappan, Krish Palaniappan, and Varun Palaniappan. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Krish Palaniappan and Varun Palaniappan, Krish Palaniappan, and Varun Palaniappan یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

In this conversation, Krish Palaniappan introduces Weaviate, an open-source vector database, and explores its functionalities compared to traditional databases. The discussion covers the setup and configuration of Weaviate, hands-on coding examples, and the importance of vectorization and embeddings in AI. The conversation also addresses debugging challenges faced during implementation and concludes with a recap of the key points discussed. Takeaways

  • Weaviate is an open-source vector database designed for AI applications.

  • Vector databases differ fundamentally from traditional databases in data retrieval methods.

  • Understanding vector embeddings is crucial for leveraging vector databases effectively.

  • Hands-on coding examples help illustrate the practical use of Weaviate.

  • Python is often preferred for AI-related programming due to its extensive support.

  • Debugging is an essential part of working with new technologies like Weaviate.

  • Vectorization optimizes database operations for modern CPU architectures.

  • Embedding models can encode various types of unstructured data.

  • The conversation emphasizes co-learning and exploration of new technologies.

  • Future discussions may delve deeper into the capabilities of vector databases.

Chapters

00:00 Introduction to Weaviate and Vector Databases

06:58 Understanding Vector Databases vs Traditional Databases

12:05 Exploring Weaviate: Setup and Configuration

20:32 Hands-On with Weaviate: Coding and Implementation

34:50 Deep Dive into Vectorization and Embeddings

42:15 Debugging and Troubleshooting Weaviate Code

01:20:40 Recap and Future Directions

Purchase course in one of 2 ways:

1. Go to https://getsnowpal.com, and purchase it on the Web

2. On your phone:

(i) If you are an iPhone user, go to http://ios.snowpal.com, and watch the course on the go.

(ii). If you are an Android user, go to http://android.snowpal.com.

  continue reading

209 قسمت

Toate episoadele

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع