Artwork

محتوای ارائه شده توسط O'Reilly Media. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط O'Reilly Media یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

It’s time for data scientists to collaborate with researchers in other disciplines

36:08
 
اشتراک گذاری
 

Manage episode 248276927 series 1652310
محتوای ارائه شده توسط O'Reilly Media. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط O'Reilly Media یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

In this episode of the Data Show, I spoke with Forough Poursabzi-Sangdeh, a postdoctoral researcher at Microsoft Research New York City. Poursabzi works in the interdisciplinary area of interpretable and interactive machine learning. As models and algorithms become more widespread, many important considerations are becoming active research areas: fairness and bias, safety and reliability, security and privacy, and Poursabzi’s area of focus—explainability and interpretability.

We had a great conversation spanning many topics, including:

  • Current best practices and state-of-the-art methods used to explain or interpret deep learning—or, more generally, machine learning models.
  • The limitations of current model interpretability methods.
  • The lack of clear/standard metrics for comparing different approaches used for model interpretability
  • Many current AI and machine learning applications augment humans, and, thus, Poursabzi believes it’s important for data scientists to work closely with researchers in other disciplines.
  • The importance of using human subjects in model interpretability studies.

Related resources:

  continue reading

133 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 248276927 series 1652310
محتوای ارائه شده توسط O'Reilly Media. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط O'Reilly Media یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

In this episode of the Data Show, I spoke with Forough Poursabzi-Sangdeh, a postdoctoral researcher at Microsoft Research New York City. Poursabzi works in the interdisciplinary area of interpretable and interactive machine learning. As models and algorithms become more widespread, many important considerations are becoming active research areas: fairness and bias, safety and reliability, security and privacy, and Poursabzi’s area of focus—explainability and interpretability.

We had a great conversation spanning many topics, including:

  • Current best practices and state-of-the-art methods used to explain or interpret deep learning—or, more generally, machine learning models.
  • The limitations of current model interpretability methods.
  • The lack of clear/standard metrics for comparing different approaches used for model interpretability
  • Many current AI and machine learning applications augment humans, and, thus, Poursabzi believes it’s important for data scientists to work closely with researchers in other disciplines.
  • The importance of using human subjects in model interpretability studies.

Related resources:

  continue reading

133 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش