№42: Рекомендаційні системи, ч.2. Будуємо моделі, зворотній зв'язок, а як схочемо, то і ChatGPT підключимо
Manage episode 365302267 series 3361795
В гостях Дмитро Войтех, СТО @ S-PRO
🔞 Тут будуть матюки 🔞
Робочі посилання і коментарі в каналі https://t.me/midnight_chatter
- 00:00 - 00:56 – Intro
- 00:57 - 02:50 – з чого почати побудову recommender system; як будувати baseline моделі
- 02:51 - 04:10 – говоримо про бейзлайн систему рекомендації для зображень
- 04:11 - 7:30 – говоримо про бейзлайн систему рекомендації для текстових даних; Bag of Words; BM-25
- 7:31 - 11:15 – які хороші методи для отримування вектора ознак для тексту? TF-IDF
- 11:16 - 14:47 – проблема холодного старту (Cold Start)
- 14:48 - 20:10 – моделі рекомендацій на основі механізму зворотнього зв’язку; кенселінг за дієвидло; колаборативна фільтрація – @benfred/implicit, улюблена Alternating Least Squares у каглерів
- 20:11 - 22:06 – знову говоримо про cold start; маленький кейс megogo
- 22:07 - 30:25 – Word2Vec, чи то пак Entity2Vec — як оригінальний NLP алгоритм можна використовував для побудови рекомендацій
- 30:26 - 33:20 – векторна арифметика на елементах вашої системи — як віднімати та додавати зображення та тексти один від/до одного; фантазуємо, які пошукові системи потрібні людям; слухайте подкаст з Олесем Петрівом, де космічні кораблі подорожують просторами ембедінгів
- 33:21 - 36:53 – рекомендації на базі графових нейронних мереж (GNN); чому це можна розглядати як логічне продовження моделей на базі Word2Vec; кейс AliBaba;
- 36:54 - 39:45 – чим графові нейронні мережі схожі на конволюційні; 3b1b про конволюції
- 39:46 - 45:50 – як використовувати Mixture of Experts моделі в рекомендаціях; пейпер Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer; згадуємо symbolic AI та експретні системи
- 45:51 - 51:56 – рекомендаційні системи на основні архітектури нейронних мереж Трансформер; паралелі з Deep & Wide model; слідкуйте за https://eugeneyan.com/
- 51:57 - 1:01:46 – алгоритми Learning to Rank (навчання ранжуванню) — побороли recall, починаємо бороти precision; поточкові, попарні та помножинні підходи; RankNet; LambdaMart
- 1:01:47 - 1:06:19 – рекомендації на базі моделі CLIP - Contrastive Language–Image Pre-training; як тюнити CLIP
- 1:06:20 - 1:07:28 – знову фантазуємо про просунуті пошукові інтерфейси; reverse image search
- 1:07:29 - 1:11:40 – як використовувати LLM для рекомендацій? Забудьте про ембеддінги – несемо prompt engineering в маси!
- 1:11:41 - 1:17:18 – крейзі ідеї в світі LLM – ChatGPT розкаже вам, як спати та бігати, враховуючи дані з вашого Apple Watch; як LLM обробляє великі дані через маленьке контекстне вікно
- 1:17:19 - 1:22:13 – Підбиваємо підсумки; перераховуємо теми в галузі рекомендаційних систем, про які ми НЕ поговорили, але які варто подосліджувати. Коли повернеться подкаст?
Долучайтесь до наших соцмереж:
- https://t.me/midnight_chatter
- Twitter @O_Balachky
- TikTok @o_balachky
Музика: https://www.streambeats.com/ | @stasgavrylov
47 قسمت