Flash Forward is a show about possible (and not so possible) future scenarios. What would the warranty on a sex robot look like? How would diplomacy work if we couldn’t lie? Could there ever be a fecal transplant black market? (Complicated, it wouldn’t, and yes, respectively, in case you’re curious.) Hosted and produced by award winning science journalist Rose Eveleth, each episode combines audio drama and journalism to go deep on potential tomorrows, and uncovers what those futures might re ...
…
continue reading
محتوای ارائه شده توسط NLP Highlights and Allen Institute for Artificial Intelligence. تمام محتوای پادکست شامل قسمتها، گرافیکها و توضیحات پادکست مستقیماً توسط NLP Highlights and Allen Institute for Artificial Intelligence یا شریک پلتفرم پادکست آنها آپلود و ارائه میشوند. اگر فکر میکنید شخصی بدون اجازه شما از اثر دارای حق نسخهبرداری شما استفاده میکند، میتوانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !
با برنامه Player FM !
88 - A Structural Probe for Finding Syntax in Word Representations, with John Hewitt
Manage episode 232931728 series 1452120
محتوای ارائه شده توسط NLP Highlights and Allen Institute for Artificial Intelligence. تمام محتوای پادکست شامل قسمتها، گرافیکها و توضیحات پادکست مستقیماً توسط NLP Highlights and Allen Institute for Artificial Intelligence یا شریک پلتفرم پادکست آنها آپلود و ارائه میشوند. اگر فکر میکنید شخصی بدون اجازه شما از اثر دارای حق نسخهبرداری شما استفاده میکند، میتوانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
In this episode, we invite John Hewitt to discuss his take on how to probe word embeddings for syntactic information. The basic idea is to project word embeddings to a vector space where the L2 distance between a pair of words in a sentence approximates the number of hops between them in the dependency tree. The proposed method shows that ELMo and BERT representations, trained with no syntactic supervision, embed many of the unlabeled, undirected dependency attachments between words in the same sentence. Paper: https://nlp.stanford.edu/pubs/hewitt2019structural.pdf GitHub repository: https://github.com/john-hewitt/structural-probes Blog post: https://nlp.stanford.edu/~johnhew/structural-probe.html Twitter thread: https://twitter.com/johnhewtt/status/1114252302141886464 John's homepage: https://nlp.stanford.edu/~johnhew/
…
continue reading
145 قسمت
Manage episode 232931728 series 1452120
محتوای ارائه شده توسط NLP Highlights and Allen Institute for Artificial Intelligence. تمام محتوای پادکست شامل قسمتها، گرافیکها و توضیحات پادکست مستقیماً توسط NLP Highlights and Allen Institute for Artificial Intelligence یا شریک پلتفرم پادکست آنها آپلود و ارائه میشوند. اگر فکر میکنید شخصی بدون اجازه شما از اثر دارای حق نسخهبرداری شما استفاده میکند، میتوانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
In this episode, we invite John Hewitt to discuss his take on how to probe word embeddings for syntactic information. The basic idea is to project word embeddings to a vector space where the L2 distance between a pair of words in a sentence approximates the number of hops between them in the dependency tree. The proposed method shows that ELMo and BERT representations, trained with no syntactic supervision, embed many of the unlabeled, undirected dependency attachments between words in the same sentence. Paper: https://nlp.stanford.edu/pubs/hewitt2019structural.pdf GitHub repository: https://github.com/john-hewitt/structural-probes Blog post: https://nlp.stanford.edu/~johnhew/structural-probe.html Twitter thread: https://twitter.com/johnhewtt/status/1114252302141886464 John's homepage: https://nlp.stanford.edu/~johnhew/
…
continue reading
145 قسمت
Kaikki jaksot
×به Player FM خوش آمدید!
Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.