Artwork

محتوای ارائه شده توسط NLP Highlights and Allen Institute for Artificial Intelligence. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط NLP Highlights and Allen Institute for Artificial Intelligence یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

23 - Get To The Point: Summarization with Pointer-Generator Networks

17:14
 
اشتراک گذاری
 

Manage episode 181754819 series 1452120
محتوای ارائه شده توسط NLP Highlights and Allen Institute for Artificial Intelligence. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط NLP Highlights and Allen Institute for Artificial Intelligence یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
ACL 2017 paper by Abigail See, Peter Liu, and Chris Manning. Matt presents the paper, describing the task (summarization on CNN/Daily Mail), the model (the standard copy + generate model that people are using these days, plus a nice coverage loss term), and the results (can't beat the extractive baseline, but coming close). It's a nice paper - very well written, interesting discussion section. https://www.semanticscholar.org/paper/Get-To-The-Point-Summarization-with-Pointer-Genera-See-Liu/13db673d09f546698e0bfb6687beeb5345f81ad9 Abigail also has a very nice blog post where she describes her work in a less formal tone than the paper: http://www.abigailsee.com/2017/04/16/taming-rnns-for-better-summarization.html
  continue reading

145 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 181754819 series 1452120
محتوای ارائه شده توسط NLP Highlights and Allen Institute for Artificial Intelligence. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط NLP Highlights and Allen Institute for Artificial Intelligence یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
ACL 2017 paper by Abigail See, Peter Liu, and Chris Manning. Matt presents the paper, describing the task (summarization on CNN/Daily Mail), the model (the standard copy + generate model that people are using these days, plus a nice coverage loss term), and the results (can't beat the extractive baseline, but coming close). It's a nice paper - very well written, interesting discussion section. https://www.semanticscholar.org/paper/Get-To-The-Point-Summarization-with-Pointer-Genera-See-Liu/13db673d09f546698e0bfb6687beeb5345f81ad9 Abigail also has a very nice blog post where she describes her work in a less formal tone than the paper: http://www.abigailsee.com/2017/04/16/taming-rnns-for-better-summarization.html
  continue reading

145 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش