Artwork

محتوای ارائه شده توسط Zeta Alpha. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Zeta Alpha یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

Evaluating Extrapolation Performance of Dense Retrieval: How does DR compare to cross encoders when it comes to generalization?

58:30
 
اشتراک گذاری
 

Manage episode 355037185 series 3446693
محتوای ارائه شده توسط Zeta Alpha. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Zeta Alpha یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

How much of the training and test sets in TREC or MS Marco overlap? Can we evaluate on different splits of the data to isolate the extrapolation performance?

In this episode of Neural Information Retrieval Talks, Andrew Yates and Sergi Castella i Sapé discuss the paper "Evaluating Extrapolation Performance of Dense Retrieval" byJingtao Zhan, Xiaohui Xie, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma.

📄 Paper: https://arxiv.org/abs/2204.11447

❓ About MS Marco: https://microsoft.github.io/msmarco/

❓About TREC: https://trec.nist.gov/

🪃 Feedback form: https://scastella.typeform.com/to/rg7a5GfJ

Timestamps:

00:00 Introduction

01:08 Evaluation in Information Retrieval, why is it exciting

07:40 Extrapolation Performance in Dense Retrieval

10:30 Learning in High Dimension Always Amounts to Extrapolation

11:40 3 Research questions

16:18 Defining Train-Test label overlap: entity and query intent overlap

21:00 Train-test Overlap in existing benchmarks TREC

23:29 Resampling evaluation methods: constructing distinct train-test sets

25:37 Baselines and results: ColBERT, SPLADE

29:36 Table 6: interpolation vs. extrapolation performance in TREC

33:06 Table 7: interplation vs. extrapolation in MS Marco

35:55 Table 8: Comparing different DR training approaches

40:00 Research Question 1 resolved: cross encoders are more robust than dense retrieval in extrapolation

42:00 Extrapolation and Domain Transfer: BEIR benchmark.

44:46 Figure 2: correlation between extrapolation performance and domain transfer performance

48:35 Broad strokes takeaways from this work

52:30 Is there any intuition behind the results where Dense Retrieval generalizes worse than Cross Encoders?

56:14 Will this have an impact on the IR benchmarking culture?

57:40 Outro

Contact: castella@zeta-alpha.com

  continue reading

21 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 355037185 series 3446693
محتوای ارائه شده توسط Zeta Alpha. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Zeta Alpha یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

How much of the training and test sets in TREC or MS Marco overlap? Can we evaluate on different splits of the data to isolate the extrapolation performance?

In this episode of Neural Information Retrieval Talks, Andrew Yates and Sergi Castella i Sapé discuss the paper "Evaluating Extrapolation Performance of Dense Retrieval" byJingtao Zhan, Xiaohui Xie, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma.

📄 Paper: https://arxiv.org/abs/2204.11447

❓ About MS Marco: https://microsoft.github.io/msmarco/

❓About TREC: https://trec.nist.gov/

🪃 Feedback form: https://scastella.typeform.com/to/rg7a5GfJ

Timestamps:

00:00 Introduction

01:08 Evaluation in Information Retrieval, why is it exciting

07:40 Extrapolation Performance in Dense Retrieval

10:30 Learning in High Dimension Always Amounts to Extrapolation

11:40 3 Research questions

16:18 Defining Train-Test label overlap: entity and query intent overlap

21:00 Train-test Overlap in existing benchmarks TREC

23:29 Resampling evaluation methods: constructing distinct train-test sets

25:37 Baselines and results: ColBERT, SPLADE

29:36 Table 6: interpolation vs. extrapolation performance in TREC

33:06 Table 7: interplation vs. extrapolation in MS Marco

35:55 Table 8: Comparing different DR training approaches

40:00 Research Question 1 resolved: cross encoders are more robust than dense retrieval in extrapolation

42:00 Extrapolation and Domain Transfer: BEIR benchmark.

44:46 Figure 2: correlation between extrapolation performance and domain transfer performance

48:35 Broad strokes takeaways from this work

52:30 Is there any intuition behind the results where Dense Retrieval generalizes worse than Cross Encoders?

56:14 Will this have an impact on the IR benchmarking culture?

57:40 Outro

Contact: castella@zeta-alpha.com

  continue reading

21 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش