Artwork

محتوای ارائه شده توسط Modern Web. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Modern Web یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

How Elasticsearch Improves Search Relevance, Log Parsing, Production Systems, + More!

35:34
 
اشتراک گذاری
 

Manage episode 500101414 series 2927306
محتوای ارائه شده توسط Modern Web. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Modern Web یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

In this episode of the Modern Web Podcast, Rob Ocel and Danny Thompson talk with Philipp Krenn, Head of Developer Advocacy at Elastic, about how Elasticsearch has evolved from a search engine into a foundation for observability, security, and AI-powered systems. Philipp explains how Elastic approaches information retrieval beyond just vector search, using tools like LLMs for smarter querying, log parsing, and context-aware data access.

They also discuss how Elastic balances innovation with stability through regular releases and a focus on long-term reliability. For teams building with AI, Elastic offers a way to handle search, monitoring, and logging in one platform, making it easier to ship faster without adding complexity.

Key points from this episode:

  • Elasticsearch has expanded beyond search to support observability and security by treating all of them as information retrieval problems.
  • Elastic integrates with AI tools like LLMs to improve search relevance, automate log parsing, and enable features like query rewriting and retrieval-augmented generation.

  • Vector search is just one feature in a larger toolkit for finding relevant data, and Elastic supports hybrid and traditional search approaches.

  • Elastic maintains a steady release cadence with a focus on stability, making it a reliable choice for both fast-moving AI projects and long-term production systems.

Philipp Krenn on Linkedin: https://www.linkedin.com/in/philippkrenn/

Rob Ocel on Linkedin: https://www.linkedin.com/in/robocel/

Danny Thompson on Linkedin: https://www.linkedin.com/in/dthompsondev/

This Dot Labs Twitter: https://x.com/ThisDotLabs

This Dot Media Twitter: https://x.com/ThisDotMediaThis Dot Labs

Instagram: https://www.instagram.com/thisdotlabs/

This Dot Labs Facebook: https://www.facebook.com/thisdot/

This Dot Labs Bluesky: https://bsky.app/profile/thisdotlabs.bsky.social

Sponsored by This Dot Labs: ai.thisdot.co

  continue reading

166 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 500101414 series 2927306
محتوای ارائه شده توسط Modern Web. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Modern Web یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

In this episode of the Modern Web Podcast, Rob Ocel and Danny Thompson talk with Philipp Krenn, Head of Developer Advocacy at Elastic, about how Elasticsearch has evolved from a search engine into a foundation for observability, security, and AI-powered systems. Philipp explains how Elastic approaches information retrieval beyond just vector search, using tools like LLMs for smarter querying, log parsing, and context-aware data access.

They also discuss how Elastic balances innovation with stability through regular releases and a focus on long-term reliability. For teams building with AI, Elastic offers a way to handle search, monitoring, and logging in one platform, making it easier to ship faster without adding complexity.

Key points from this episode:

  • Elasticsearch has expanded beyond search to support observability and security by treating all of them as information retrieval problems.
  • Elastic integrates with AI tools like LLMs to improve search relevance, automate log parsing, and enable features like query rewriting and retrieval-augmented generation.

  • Vector search is just one feature in a larger toolkit for finding relevant data, and Elastic supports hybrid and traditional search approaches.

  • Elastic maintains a steady release cadence with a focus on stability, making it a reliable choice for both fast-moving AI projects and long-term production systems.

Philipp Krenn on Linkedin: https://www.linkedin.com/in/philippkrenn/

Rob Ocel on Linkedin: https://www.linkedin.com/in/robocel/

Danny Thompson on Linkedin: https://www.linkedin.com/in/dthompsondev/

This Dot Labs Twitter: https://x.com/ThisDotLabs

This Dot Media Twitter: https://x.com/ThisDotMediaThis Dot Labs

Instagram: https://www.instagram.com/thisdotlabs/

This Dot Labs Facebook: https://www.facebook.com/thisdot/

This Dot Labs Bluesky: https://bsky.app/profile/thisdotlabs.bsky.social

Sponsored by This Dot Labs: ai.thisdot.co

  continue reading

166 قسمت

ทุกตอน

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش