Artwork

محتوای ارائه شده توسط Demetrios. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Demetrios یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

When You Say Data Scientist Do You Mean Data Engineer? Lessons Learned From Start Up Life // Elizabeth Chabot

1:00:54
 
اشتراک گذاری
 

Manage episode 313294498 series 3241972
محتوای ارائه شده توسط Demetrios. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Demetrios یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

In this episode, we talked to Elizabeth Chabot, Consultant at Deloitte, about When You Say Data Scientist Do You Mean Data Engineer? Lessons Learned From StartUp Life.

// Key takeaways:
If you have a data product that you want to function in production, you need MLOps Education needs to happen about the data product life cycle, noting that ML is just part of the equation Titles need to be defined to help outside users understand the differences in roles
// Abstract:
ML and AI may sound sexy to investors, but if you work in the field you've probably spent late nights reviewing outputs manually, poured over logs and ran root cause analyses until your eyes hurt. If you've created data products at a company where analytics and data science held no meaning before your arrival, you've probably spent many-a-late-night explaining the basics of data collection, why ETL cannot be half-baked and that when you create a supervised model it needs to be supervised. Companies hoping to create a data product can have a data scientist show them how ML/AI can further their product, help them scale, or create better recommendations than their competitors. What companies are not always aware of is once the algorithm is created the data scientist is usually handicapped until more data-hires are made to build the necessary pipelines and frontend to put the algorithm in production. With the number of unique data-titles growing each year, how should the first data-evangelist-wrangler-wizard navigate title assignment?
// Bio: Elizabeth is a researcher turned data nerd. With a background in social and clinical sciences, Elizabeth is focused on developing data solutions that focus on creating value adds while allowing the user to make more intelligent decisions.
----------- Connect With Us ✌️-------------
Join our slack community: https://go.mlops.community/slack
Follow us on Twitter: @mlopscommunity
Sign up for the next meetup: https://go.mlops.community/register

Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/

  continue reading

473 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 313294498 series 3241972
محتوای ارائه شده توسط Demetrios. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Demetrios یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

In this episode, we talked to Elizabeth Chabot, Consultant at Deloitte, about When You Say Data Scientist Do You Mean Data Engineer? Lessons Learned From StartUp Life.

// Key takeaways:
If you have a data product that you want to function in production, you need MLOps Education needs to happen about the data product life cycle, noting that ML is just part of the equation Titles need to be defined to help outside users understand the differences in roles
// Abstract:
ML and AI may sound sexy to investors, but if you work in the field you've probably spent late nights reviewing outputs manually, poured over logs and ran root cause analyses until your eyes hurt. If you've created data products at a company where analytics and data science held no meaning before your arrival, you've probably spent many-a-late-night explaining the basics of data collection, why ETL cannot be half-baked and that when you create a supervised model it needs to be supervised. Companies hoping to create a data product can have a data scientist show them how ML/AI can further their product, help them scale, or create better recommendations than their competitors. What companies are not always aware of is once the algorithm is created the data scientist is usually handicapped until more data-hires are made to build the necessary pipelines and frontend to put the algorithm in production. With the number of unique data-titles growing each year, how should the first data-evangelist-wrangler-wizard navigate title assignment?
// Bio: Elizabeth is a researcher turned data nerd. With a background in social and clinical sciences, Elizabeth is focused on developing data solutions that focus on creating value adds while allowing the user to make more intelligent decisions.
----------- Connect With Us ✌️-------------
Join our slack community: https://go.mlops.community/slack
Follow us on Twitter: @mlopscommunity
Sign up for the next meetup: https://go.mlops.community/register

Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/

  continue reading

473 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش