51 subscribers
با برنامه Player FM !
پادکست هایی که ارزش شنیدن دارند
حمایت شده
Unpacking 3 Types of Feature Stores // Simba Khadder // #265
Manage episode 442982229 series 3241972
Simba Khadder is the Founder & CEO of Featureform. He started his ML career in recommender systems where he architected a multi-modal personalization engine that powered 100s of millions of user’s experiences. Unpacking 3 Types of Feature Stores // MLOps Podcast #265 with Simba Khadder, Founder & CEO of Featureform. // Abstract Simba dives into how feature stores have evolved and how they now intersect with vector stores, especially in the world of machine learning and LLMs. He breaks down what embeddings are, how they power recommender systems, and why personalization is key to improving LLM prompts. Simba also sheds light on the difference between feature and vector stores, explaining how each plays its part in making ML workflows smoother. Plus, we get into the latest challenges and cool innovations happening in MLOps. // Bio Simba Khadder is the Founder & CEO of Featureform. After leaving Google, Simba founded his first company, TritonML. His startup grew quickly and Simba and his team built ML infrastructure that handled over 100M monthly active users. He instilled his learnings into Featureform’s virtual feature store. Featureform turns your existing infrastructure into a Feature Store. He’s also an avid surfer, a mixed martial artist, a published astrophysicist for his work on finding Planet 9, and he ran the SF marathon in basketball shoes. // MLOps Jobs board https://mlops.pallet.xyz/jobs // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Website: featureform.comBigQuery Feature Store // Nicolas Mauti // MLOps Podcast #255: https://www.youtube.com/watch?v=NtDKbGyRHXQ&ab_channel=MLOps.community --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Simba on LinkedIn: https://www.linkedin.com/in/simba-k/ Timestamps: [00:00] Simba's preferred coffee [00:08] Takeaways [02:01] Coining the term 'Embedding' [07:10] Dual Tower Recommender System [10:06] Complexity vs Reliability in AI [12:39] Vector Stores and Feature Stores [17:56] Value of Data Scientists [20:27] Scalability vs Quick Solutions [23:07] MLOps vs LLMOps Debate [24:12] Feature Stores' current landscape [32:02] ML lifecycle challenges and tools [36:16] Feature Stores bundling impact [42:13] Feature Stores and BigQuery [47:42] Virtual vs Literal Feature Store [50:13] Hadoop Community Challenges [52:46] LLM data lifecycle challenges [56:30] Personalization in prompting usage [59:09] Contextualizing company variables [1:03:10] DSPy framework adoption insights [1:05:25] Wrap up
435 قسمت
Manage episode 442982229 series 3241972
Simba Khadder is the Founder & CEO of Featureform. He started his ML career in recommender systems where he architected a multi-modal personalization engine that powered 100s of millions of user’s experiences. Unpacking 3 Types of Feature Stores // MLOps Podcast #265 with Simba Khadder, Founder & CEO of Featureform. // Abstract Simba dives into how feature stores have evolved and how they now intersect with vector stores, especially in the world of machine learning and LLMs. He breaks down what embeddings are, how they power recommender systems, and why personalization is key to improving LLM prompts. Simba also sheds light on the difference between feature and vector stores, explaining how each plays its part in making ML workflows smoother. Plus, we get into the latest challenges and cool innovations happening in MLOps. // Bio Simba Khadder is the Founder & CEO of Featureform. After leaving Google, Simba founded his first company, TritonML. His startup grew quickly and Simba and his team built ML infrastructure that handled over 100M monthly active users. He instilled his learnings into Featureform’s virtual feature store. Featureform turns your existing infrastructure into a Feature Store. He’s also an avid surfer, a mixed martial artist, a published astrophysicist for his work on finding Planet 9, and he ran the SF marathon in basketball shoes. // MLOps Jobs board https://mlops.pallet.xyz/jobs // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Website: featureform.comBigQuery Feature Store // Nicolas Mauti // MLOps Podcast #255: https://www.youtube.com/watch?v=NtDKbGyRHXQ&ab_channel=MLOps.community --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Simba on LinkedIn: https://www.linkedin.com/in/simba-k/ Timestamps: [00:00] Simba's preferred coffee [00:08] Takeaways [02:01] Coining the term 'Embedding' [07:10] Dual Tower Recommender System [10:06] Complexity vs Reliability in AI [12:39] Vector Stores and Feature Stores [17:56] Value of Data Scientists [20:27] Scalability vs Quick Solutions [23:07] MLOps vs LLMOps Debate [24:12] Feature Stores' current landscape [32:02] ML lifecycle challenges and tools [36:16] Feature Stores bundling impact [42:13] Feature Stores and BigQuery [47:42] Virtual vs Literal Feature Store [50:13] Hadoop Community Challenges [52:46] LLM data lifecycle challenges [56:30] Personalization in prompting usage [59:09] Contextualizing company variables [1:03:10] DSPy framework adoption insights [1:05:25] Wrap up
435 قسمت
همه قسمت ها
×
1 A Candid Conversation Around MCP and A2A // Rahul Parundekar and Sam Partee // #316 SF Live 1:04:42

1 Making AI Reliable is the Greatest Challenge of the 2020s // Alon Bochman // #312 1:01:37

1 Behavior Modeling, Secondary AI Effects, Bias Reduction & Synthetic Data // Devansh Devansh // #311 1:01:35

1 GraphBI: Expanding Analytics to All Data Through the Combination of GenAI, Graph, & Visual Analytics // Paco Nathan & Weidong Yang // #310 1:14:01

1 I Am Once Again Asking "What is MLOps?" // Oleksandr Stasyk // #308 1:07:22

1 Agents of Innovation: AI-Powered Product Ideation with Synthetic Consumer Testing // Luca Fiaschi // #306 1:02:23

1 We're All Finetuning Incorrectly // Tanmay Chopra // #304 1:00:30




1 From Rules to Reasoning Engines // George Mathew // #296 1:05:26

1 GenAI Traffic: Why API Infrastructure Must Evolve... Again // Erica Hughberg // #296 1:06:24

1 Future of Software, Agents in the Enterprise, and Inception Stage Company Building // Eliot Durbin // #293 54:26

1 The Agent Landscape - Lessons Learned Putting Agents Into Production 1:08:40

1 Evolving Workflow Orchestration // Alex Milowski // #291 1:14:34




1 Navigating Machine Learning Careers: Insights from Meta to Consulting // Ilya Reznik // #286 1:00:36


1 Machine Learning, AI Agents, and Autonomy // Egor Kraev // #282 1:05:20


1 Unleashing Unconstrained News Knowledge Graphs to Combat Misinformation // Robert Caulk // #279 1:15:24

1 Who's MLOps for Anyway? // Jonathan Rioux // #261 1:10:14


1 Building in Production Human-centred GenAI Solutions // Mohamed Abusaid & Mara Pometti// #177 1:02:42

1 MLOps for GenAI Applications // Harcharan Kabbay // #256 1:07:18

1 Design and Development Principles for LLMOps // Andy McMahon // #254 1:10:17
به Player FM خوش آمدید!
Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.