Artwork

محتوای ارائه شده توسط Demetrios. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Demetrios یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

Tricks to Fine Tuning // Prithviraj Ammanabrolu // #318

54:01
 
اشتراک گذاری
 

Manage episode 488095381 series 3241972
محتوای ارائه شده توسط Demetrios. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Demetrios یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Tricks to Fine Tuning // MLOps Podcast #318 with Prithviraj Ammanabrolu, Research Scientist at Databricks.

Join the Community: https://go.mlops.community/YTJoinIn

Get the newsletter: https://go.mlops.community/YTNewsletter

// Abstract

Prithviraj Ammanabrolu drops by to break down Tao fine-tuning—a clever way to train models without labeled data. Using reinforcement learning and synthetic data, Tao teaches models to evaluate and improve themselves. Raj explains how this works, where it shines (think small models punching above their weight), and why it could be a game-changer for efficient deployment.

// Bio

Raj is an Assistant Professor of Computer Science at the University of California, San Diego, leading the PEARLS Lab in the Department of Computer Science and Engineering (CSE). He is also a Research Scientist at Mosaic AI, Databricks, where his team is actively recruiting research scientists and engineers with expertise in reinforcement learning and distributed systems.

Previously, he was part of the Mosaic team at the Allen Institute for AI. He earned his PhD in Computer Science from the School of Interactive Computing at Georgia Tech, advised by Professor Mark Riedl in the Entertainment Intelligence Lab.

// Related Links

Website: https://www.databricks.com/

~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~

Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExplore

Join our Slack community [https://go.mlops.community/slack]

Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)]

Sign up for the next meetup: [https://go.mlops.community/register]

MLOps Swag/Merch: [https://shop.mlops.community/]

Connect with Demetrios on LinkedIn: /dpbrinkm

Connect with Raj on LinkedIn: /rajammanabrolu

Timestamps:

[00:00] Raj's preferred coffee

[00:36] Takeaways

[01:02] Tao Naming Decision

[04:19] No Labels Machine Learning

[08:09] Tao and TAO breakdown

[13:20] Reward Model Fine-Tuning

[18:15] Training vs Inference Compute

[22:32] Retraining and Model Drift

[29:06] Prompt Tuning vs Fine-Tuning

[34:32] Small Model Optimization Strategies

[37:10] Small Model Potential

[43:08] Fine-tuning Model Differences

[46:02] Mistral Model Freedom

[53:46] Wrap up

  continue reading

469 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 488095381 series 3241972
محتوای ارائه شده توسط Demetrios. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Demetrios یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Tricks to Fine Tuning // MLOps Podcast #318 with Prithviraj Ammanabrolu, Research Scientist at Databricks.

Join the Community: https://go.mlops.community/YTJoinIn

Get the newsletter: https://go.mlops.community/YTNewsletter

// Abstract

Prithviraj Ammanabrolu drops by to break down Tao fine-tuning—a clever way to train models without labeled data. Using reinforcement learning and synthetic data, Tao teaches models to evaluate and improve themselves. Raj explains how this works, where it shines (think small models punching above their weight), and why it could be a game-changer for efficient deployment.

// Bio

Raj is an Assistant Professor of Computer Science at the University of California, San Diego, leading the PEARLS Lab in the Department of Computer Science and Engineering (CSE). He is also a Research Scientist at Mosaic AI, Databricks, where his team is actively recruiting research scientists and engineers with expertise in reinforcement learning and distributed systems.

Previously, he was part of the Mosaic team at the Allen Institute for AI. He earned his PhD in Computer Science from the School of Interactive Computing at Georgia Tech, advised by Professor Mark Riedl in the Entertainment Intelligence Lab.

// Related Links

Website: https://www.databricks.com/

~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~

Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExplore

Join our Slack community [https://go.mlops.community/slack]

Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)]

Sign up for the next meetup: [https://go.mlops.community/register]

MLOps Swag/Merch: [https://shop.mlops.community/]

Connect with Demetrios on LinkedIn: /dpbrinkm

Connect with Raj on LinkedIn: /rajammanabrolu

Timestamps:

[00:00] Raj's preferred coffee

[00:36] Takeaways

[01:02] Tao Naming Decision

[04:19] No Labels Machine Learning

[08:09] Tao and TAO breakdown

[13:20] Reward Model Fine-Tuning

[18:15] Training vs Inference Compute

[22:32] Retraining and Model Drift

[29:06] Prompt Tuning vs Fine-Tuning

[34:32] Small Model Optimization Strategies

[37:10] Small Model Potential

[43:08] Fine-tuning Model Differences

[46:02] Mistral Model Freedom

[53:46] Wrap up

  continue reading

469 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش