Artwork

محتوای ارائه شده توسط Demetrios. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Demetrios یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

LinkedIn Recommender System Predictive ML vs LLMs

47:39
 
اشتراک گذاری
 

Manage episode 499820399 series 3241972
محتوای ارائه شده توسط Demetrios. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Demetrios یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Demetrios chats with Arpita Vats about how LLMs are shaking up recommender systems. Instead of relying on hand-crafted features and rigid user clusters, LLMs can read between the lines—spotting patterns in user behavior and content like a human would. They cover the perks (less manual setup, smarter insights) and the pain points (latency, high costs), plus how mixing models might be the sweet spot. From timing content perfectly to knowing when traditional methods still win, this episode pulls back the curtain on the future of recommendations.

// Bio

Arpita Vats is a passionate and accomplished researcher in the field of Artificial Intelligence, with a focus on Natural Language Processing, Recommender Systems, and Multimodal AI. With a strong academic foundation and hands-on experience at leading tech companies such as LinkedIn, Meta, and Staples, Arpita has contributed to cutting-edge projects spanning large language models (LLMs), privacy-aware AI, and video content understanding.

She has published impactful research at premier venues and actively serves as a reviewer for top-tier conferences like CVPR, ICLR, and KDD. Arpita’s work bridges academic innovation with industry-scale deployment, making her a sought-after collaborator in the AI research community.

Currently, she is engaged in exploring the alignment and safety of language models, developing robust metrics like the Alignment Quality Index (AQI), and optimizing model behavior across diverse input domains. Her dedication to advancing ethical and scalable AI reflects both in her academic pursuits and professional contributions.

// Related Links

#recommendersystems #LLMs #linkedin

~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~

Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExplore

MLOps Swag/Merch: [https://shop.mlops.community/]

Connect with Demetrios on LinkedIn: /dpbrinkm

Connect with Arpita on LinkedIn: /arpita-v-0a14a422/

Timestamps:

[00:00] Smarter Content Recommendations

[05:19] LLMs: Next-Gen Recommendations

[09:37] Judging LLM Suggestions

[11:38] Old vs New Recommenders

[14:11] Why LLMs Get Stuck

[16:52] When Old Models Win

[22:39] After-Booking Rec Magic

[23:26] One LLM to Rule Models

[29:14] Personalization That Evolves

[32:39] SIM Beats Transformers in QA

[35:35] Agents Writing Research Papers

[37:12] Big-Company Agent Failures

[41:47] LinkedIn Posts Fade Faster

[46:04] Clustering Shifts Social Feeds

[47:01] Vanishing Posts, Replay Mode

  continue reading

469 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 499820399 series 3241972
محتوای ارائه شده توسط Demetrios. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Demetrios یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Demetrios chats with Arpita Vats about how LLMs are shaking up recommender systems. Instead of relying on hand-crafted features and rigid user clusters, LLMs can read between the lines—spotting patterns in user behavior and content like a human would. They cover the perks (less manual setup, smarter insights) and the pain points (latency, high costs), plus how mixing models might be the sweet spot. From timing content perfectly to knowing when traditional methods still win, this episode pulls back the curtain on the future of recommendations.

// Bio

Arpita Vats is a passionate and accomplished researcher in the field of Artificial Intelligence, with a focus on Natural Language Processing, Recommender Systems, and Multimodal AI. With a strong academic foundation and hands-on experience at leading tech companies such as LinkedIn, Meta, and Staples, Arpita has contributed to cutting-edge projects spanning large language models (LLMs), privacy-aware AI, and video content understanding.

She has published impactful research at premier venues and actively serves as a reviewer for top-tier conferences like CVPR, ICLR, and KDD. Arpita’s work bridges academic innovation with industry-scale deployment, making her a sought-after collaborator in the AI research community.

Currently, she is engaged in exploring the alignment and safety of language models, developing robust metrics like the Alignment Quality Index (AQI), and optimizing model behavior across diverse input domains. Her dedication to advancing ethical and scalable AI reflects both in her academic pursuits and professional contributions.

// Related Links

#recommendersystems #LLMs #linkedin

~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~

Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExplore

MLOps Swag/Merch: [https://shop.mlops.community/]

Connect with Demetrios on LinkedIn: /dpbrinkm

Connect with Arpita on LinkedIn: /arpita-v-0a14a422/

Timestamps:

[00:00] Smarter Content Recommendations

[05:19] LLMs: Next-Gen Recommendations

[09:37] Judging LLM Suggestions

[11:38] Old vs New Recommenders

[14:11] Why LLMs Get Stuck

[16:52] When Old Models Win

[22:39] After-Booking Rec Magic

[23:26] One LLM to Rule Models

[29:14] Personalization That Evolves

[32:39] SIM Beats Transformers in QA

[35:35] Agents Writing Research Papers

[37:12] Big-Company Agent Failures

[41:47] LinkedIn Posts Fade Faster

[46:04] Clustering Shifts Social Feeds

[47:01] Vanishing Posts, Replay Mode

  continue reading

469 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش