Artwork

محتوای ارائه شده توسط HackerNoon. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط HackerNoon یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

"We Are Very Early in Our Work With LLMs," - Prem Ramaswami, Head of Data Commons at Google

13:53
 
اشتراک گذاری
 

Manage episode 513589911 series 3474148
محتوای ارائه شده توسط HackerNoon. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط HackerNoon یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

This story was originally published on HackerNoon at: https://hackernoon.com/we-are-very-early-in-our-work-with-llms-prem-ramaswami-head-of-data-commons-at-google.
Google's Head of Data Commons joined HackerNoon to discuss grounding AI in verifiable data, and why "we are very early with LLMs," MCP's open approach.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #llm, #data, #hackernoon-top-story, #interview, #work-with-llms, #data-with-llm, #accurate-data-with-llms, #datasets, and more.
This story was written by: @David. Learn more about this writer by checking @David's about page, and for more stories, please visit hackernoon.com.
Google Data Commons launched an MCP server to ground AI in verifiable public data from trusted sources like the UN, World Bank, and Census Bureau. The clever part: users' own LLMs do the translation work, so Google's compute isn't involved. Prem Ramaswami argues we're still "very early" with LLMs (Google's transformer paper was only 2017) and the answer to hallucinations is "try all of the above" - combining language models with robust, auditable data sources. The service is free, integrates hundreds of datasets with transparent provenance, and chose Anthropic's open MCP standard over building proprietary infrastructure. Key challenge: expanding beyond strong US/OECD coverage to make grounded AI systems globally representative.Retry

  continue reading

386 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 513589911 series 3474148
محتوای ارائه شده توسط HackerNoon. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط HackerNoon یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

This story was originally published on HackerNoon at: https://hackernoon.com/we-are-very-early-in-our-work-with-llms-prem-ramaswami-head-of-data-commons-at-google.
Google's Head of Data Commons joined HackerNoon to discuss grounding AI in verifiable data, and why "we are very early with LLMs," MCP's open approach.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #llm, #data, #hackernoon-top-story, #interview, #work-with-llms, #data-with-llm, #accurate-data-with-llms, #datasets, and more.
This story was written by: @David. Learn more about this writer by checking @David's about page, and for more stories, please visit hackernoon.com.
Google Data Commons launched an MCP server to ground AI in verifiable public data from trusted sources like the UN, World Bank, and Census Bureau. The clever part: users' own LLMs do the translation work, so Google's compute isn't involved. Prem Ramaswami argues we're still "very early" with LLMs (Google's transformer paper was only 2017) and the answer to hallucinations is "try all of the above" - combining language models with robust, auditable data sources. The service is free, integrates hundreds of datasets with transparent provenance, and chose Anthropic's open MCP standard over building proprietary infrastructure. Key challenge: expanding beyond strong US/OECD coverage to make grounded AI systems globally representative.Retry

  continue reading

386 قسمت

All episodes

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش