Artwork

محتوای ارائه شده توسط HackerNoon. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط HackerNoon یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

How to Structure Your Machine Learning Team for Success

11:44
 
اشتراک گذاری
 

Manage episode 419253629 series 3474148
محتوای ارائه شده توسط HackerNoon. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط HackerNoon یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

This story was originally published on HackerNoon at: https://hackernoon.com/how-to-structure-your-machine-learning-team-for-success.
This article discusses alternative ML team organizational models and recommendations for matching team structures to the company's stage of development.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #ai, #future-of-ai, #machine-learning, #organization-design, #business-strategy, #team-building, #team-productivity, #hackernoon-top-story, and more.
This story was written by: @cheparukhin. Learn more about this writer by checking @cheparukhin's about page, and for more stories, please visit hackernoon.com.
Machine Learning teams are vital for innovation. Choose team structures based on your company's stage: Centralized for startups, Federated for growth, and Embedded for integration. Transition thoughtfully and achieve success by aligning structure with growth.

  continue reading

316 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 419253629 series 3474148
محتوای ارائه شده توسط HackerNoon. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط HackerNoon یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

This story was originally published on HackerNoon at: https://hackernoon.com/how-to-structure-your-machine-learning-team-for-success.
This article discusses alternative ML team organizational models and recommendations for matching team structures to the company's stage of development.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #ai, #future-of-ai, #machine-learning, #organization-design, #business-strategy, #team-building, #team-productivity, #hackernoon-top-story, and more.
This story was written by: @cheparukhin. Learn more about this writer by checking @cheparukhin's about page, and for more stories, please visit hackernoon.com.
Machine Learning teams are vital for innovation. Choose team structures based on your company's stage: Centralized for startups, Federated for growth, and Embedded for integration. Transition thoughtfully and achieve success by aligning structure with growth.

  continue reading

316 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش