Artwork

محتوای ارائه شده توسط Machine Learning Street Talk (MLST). تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Machine Learning Street Talk (MLST) یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

Neel Nanda - Mechanistic Interpretability (Sparse Autoencoders)

3:42:36
 
اشتراک گذاری
 

Manage episode 454360565 series 2803422
محتوای ارائه شده توسط Machine Learning Street Talk (MLST). تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Machine Learning Street Talk (MLST) یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Neel Nanda, a senior research scientist at Google DeepMind, leads their mechanistic interpretability team. In this extensive interview, he discusses his work trying to understand how neural networks function internally. At just 25 years old, Nanda has quickly become a prominent voice in AI research after completing his pure mathematics degree at Cambridge in 2020.

Nanda reckons that machine learning is unique because we create neural networks that can perform impressive tasks (like complex reasoning and software engineering) without understanding how they work internally. He compares this to having computer programs that can do things no human programmer knows how to write. His work focuses on "mechanistic interpretability" - attempting to uncover and understand the internal structures and algorithms that emerge within these networks.

SPONSOR MESSAGES:

***

CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments.

https://centml.ai/pricing/

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on ARC and AGI, they just acquired MindsAI - the current winners of the ARC challenge. Are you interested in working on ARC, or getting involved in their events? Goto https://tufalabs.ai/

***

SHOWNOTES, TRANSCRIPT, ALL REFERENCES (DONT MISS!):

https://www.dropbox.com/scl/fi/36dvtfl3v3p56hbi30im7/NeelShow.pdf?rlkey=pq8t7lyv2z60knlifyy17jdtx&st=kiutudhc&dl=0

We riff on:

* How neural networks develop meaningful internal representations beyond simple pattern matching

* The effectiveness of chain-of-thought prompting and why it improves model performance

* The importance of hands-on coding over extensive paper reading for new researchers

* His journey from Cambridge to working with Chris Olah at Anthropic and eventually Google DeepMind

* The role of mechanistic interpretability in AI safety

NEEL NANDA:

https://www.neelnanda.io/

https://scholar.google.com/citations?user=GLnX3MkAAAAJ&hl=en

https://x.com/NeelNanda5

Interviewer - Tim Scarfe

TOC:

1. Part 1: Introduction

[00:00:00] 1.1 Introduction and Core Concepts Overview

2. Part 2: Outside Interview

[00:06:45] 2.1 Mechanistic Interpretability Foundations

3. Part 3: Main Interview

[00:32:52] 3.1 Mechanistic Interpretability

4. Neural Architecture and Circuits

[01:00:31] 4.1 Biological Evolution Parallels

[01:04:03] 4.2 Universal Circuit Patterns and Induction Heads

[01:11:07] 4.3 Entity Detection and Knowledge Boundaries

[01:14:26] 4.4 Mechanistic Interpretability and Activation Patching

5. Model Behavior Analysis

[01:30:00] 5.1 Golden Gate Claude Experiment and Feature Amplification

[01:33:27] 5.2 Model Personas and RLHF Behavior Modification

[01:36:28] 5.3 Steering Vectors and Linear Representations

[01:40:00] 5.4 Hallucinations and Model Uncertainty

6. Sparse Autoencoder Architecture

[01:44:54] 6.1 Architecture and Mathematical Foundations

[02:22:03] 6.2 Core Challenges and Solutions

[02:32:04] 6.3 Advanced Activation Functions and Top-k Implementations

[02:34:41] 6.4 Research Applications in Transformer Circuit Analysis

7. Feature Learning and Scaling

[02:48:02] 7.1 Autoencoder Feature Learning and Width Parameters

[03:02:46] 7.2 Scaling Laws and Training Stability

[03:11:00] 7.3 Feature Identification and Bias Correction

[03:19:52] 7.4 Training Dynamics Analysis Methods

8. Engineering Implementation

[03:23:48] 8.1 Scale and Infrastructure Requirements

[03:25:20] 8.2 Computational Requirements and Storage

[03:35:22] 8.3 Chain-of-Thought Reasoning Implementation

[03:37:15] 8.4 Latent Structure Inference in Language Models

  continue reading

216 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 454360565 series 2803422
محتوای ارائه شده توسط Machine Learning Street Talk (MLST). تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Machine Learning Street Talk (MLST) یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Neel Nanda, a senior research scientist at Google DeepMind, leads their mechanistic interpretability team. In this extensive interview, he discusses his work trying to understand how neural networks function internally. At just 25 years old, Nanda has quickly become a prominent voice in AI research after completing his pure mathematics degree at Cambridge in 2020.

Nanda reckons that machine learning is unique because we create neural networks that can perform impressive tasks (like complex reasoning and software engineering) without understanding how they work internally. He compares this to having computer programs that can do things no human programmer knows how to write. His work focuses on "mechanistic interpretability" - attempting to uncover and understand the internal structures and algorithms that emerge within these networks.

SPONSOR MESSAGES:

***

CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments.

https://centml.ai/pricing/

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on ARC and AGI, they just acquired MindsAI - the current winners of the ARC challenge. Are you interested in working on ARC, or getting involved in their events? Goto https://tufalabs.ai/

***

SHOWNOTES, TRANSCRIPT, ALL REFERENCES (DONT MISS!):

https://www.dropbox.com/scl/fi/36dvtfl3v3p56hbi30im7/NeelShow.pdf?rlkey=pq8t7lyv2z60knlifyy17jdtx&st=kiutudhc&dl=0

We riff on:

* How neural networks develop meaningful internal representations beyond simple pattern matching

* The effectiveness of chain-of-thought prompting and why it improves model performance

* The importance of hands-on coding over extensive paper reading for new researchers

* His journey from Cambridge to working with Chris Olah at Anthropic and eventually Google DeepMind

* The role of mechanistic interpretability in AI safety

NEEL NANDA:

https://www.neelnanda.io/

https://scholar.google.com/citations?user=GLnX3MkAAAAJ&hl=en

https://x.com/NeelNanda5

Interviewer - Tim Scarfe

TOC:

1. Part 1: Introduction

[00:00:00] 1.1 Introduction and Core Concepts Overview

2. Part 2: Outside Interview

[00:06:45] 2.1 Mechanistic Interpretability Foundations

3. Part 3: Main Interview

[00:32:52] 3.1 Mechanistic Interpretability

4. Neural Architecture and Circuits

[01:00:31] 4.1 Biological Evolution Parallels

[01:04:03] 4.2 Universal Circuit Patterns and Induction Heads

[01:11:07] 4.3 Entity Detection and Knowledge Boundaries

[01:14:26] 4.4 Mechanistic Interpretability and Activation Patching

5. Model Behavior Analysis

[01:30:00] 5.1 Golden Gate Claude Experiment and Feature Amplification

[01:33:27] 5.2 Model Personas and RLHF Behavior Modification

[01:36:28] 5.3 Steering Vectors and Linear Representations

[01:40:00] 5.4 Hallucinations and Model Uncertainty

6. Sparse Autoencoder Architecture

[01:44:54] 6.1 Architecture and Mathematical Foundations

[02:22:03] 6.2 Core Challenges and Solutions

[02:32:04] 6.3 Advanced Activation Functions and Top-k Implementations

[02:34:41] 6.4 Research Applications in Transformer Circuit Analysis

7. Feature Learning and Scaling

[02:48:02] 7.1 Autoencoder Feature Learning and Width Parameters

[03:02:46] 7.2 Scaling Laws and Training Stability

[03:11:00] 7.3 Feature Identification and Bias Correction

[03:19:52] 7.4 Training Dynamics Analysis Methods

8. Engineering Implementation

[03:23:48] 8.1 Scale and Infrastructure Requirements

[03:25:20] 8.2 Computational Requirements and Storage

[03:35:22] 8.3 Chain-of-Thought Reasoning Implementation

[03:37:15] 8.4 Latent Structure Inference in Language Models

  continue reading

216 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش