Artwork

محتوای ارائه شده توسط Machine Learning Street Talk (MLST). تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Machine Learning Street Talk (MLST) یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

Decompiling Dreams: A New Approach to ARC? - Alessandro Palmarini

51:34
 
اشتراک گذاری
 

Manage episode 445907383 series 2803422
محتوای ارائه شده توسط Machine Learning Street Talk (MLST). تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Machine Learning Street Talk (MLST) یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Alessandro Palmarini is a post-baccalaureate researcher at the Santa Fe Institute working under the supervision of Melanie Mitchell. He completed his undergraduate degree in Artificial Intelligence and Computer Science at the University of Edinburgh. Palmarini's current research focuses on developing AI systems that can efficiently acquire new skills from limited data, inspired by François Chollet's work on measuring intelligence. His work builds upon the DreamCoder program synthesis system, introducing a novel approach called "dream decompiling" to improve library learning in inductive program synthesis. Palmarini is particularly interested in addressing the Abstraction and Reasoning Corpus (ARC) challenge, aiming to create AI systems that can perform abstract reasoning tasks more efficiently than current approaches. His research explores the balance between computational efficiency and data efficiency in AI learning processes.

DO YOU WANT WORK ON ARC with the MindsAI team (current ARC winners)? MLST is sponsored by Tufa Labs: Focus: ARC, LLMs, test-time-compute, active inference, system2 reasoning, and more. Future plans: Expanding to complex environments like Warcraft 2 and Starcraft 2. Interested? Apply for an ML research position: benjamin@tufa.ai

TOC:

1. Intelligence Measurement in AI Systems

[00:00:00] 1.1 Defining Intelligence in AI Systems

[00:02:00] 1.2 Research at Santa Fe Institute

[00:04:35] 1.3 Impact of Gaming on AI Development

[00:05:10] 1.4 Comparing AI and Human Learning Efficiency

2. Efficient Skill Acquisition in AI

[00:06:40] 2.1 Intelligence as Skill Acquisition Efficiency

[00:08:25] 2.2 Limitations of Current AI Systems in Generalization

[00:09:45] 2.3 Human vs. AI Cognitive Processes

[00:10:40] 2.4 Measuring AI Intelligence: Chollet's ARC Challenge

3. Program Synthesis and ARC Challenge

[00:12:55] 3.1 Philosophical Foundations of Program Synthesis

[00:17:14] 3.2 Introduction to Program Induction and ARC Tasks

[00:18:49] 3.3 DreamCoder: Principles and Techniques

[00:27:55] 3.4 Trade-offs in Program Synthesis Search Strategies

[00:31:52] 3.5 Neural Networks and Bayesian Program Learning

4. Advanced Program Synthesis Techniques

[00:32:30] 4.1 DreamCoder and Dream Decompiling Approach

[00:39:00] 4.2 Beta Distribution and Caching in Program Synthesis

[00:45:10] 4.3 Performance and Limitations of Dream Decompiling

[00:47:45] 4.4 Alessandro's Approach to ARC Challenge

[00:51:12] 4.5 Conclusion and Future Discussions

Refs:

Full reflist on YT VD, Show Notes and MP3 metadata

Show Notes: https://www.dropbox.com/scl/fi/x50201tgqucj5ba2q4typ/Ale.pdf?rlkey=0ubvk7p5gtyx1gpownpdadim8&st=5pniu3nq&dl=0

  continue reading

213 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 445907383 series 2803422
محتوای ارائه شده توسط Machine Learning Street Talk (MLST). تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Machine Learning Street Talk (MLST) یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Alessandro Palmarini is a post-baccalaureate researcher at the Santa Fe Institute working under the supervision of Melanie Mitchell. He completed his undergraduate degree in Artificial Intelligence and Computer Science at the University of Edinburgh. Palmarini's current research focuses on developing AI systems that can efficiently acquire new skills from limited data, inspired by François Chollet's work on measuring intelligence. His work builds upon the DreamCoder program synthesis system, introducing a novel approach called "dream decompiling" to improve library learning in inductive program synthesis. Palmarini is particularly interested in addressing the Abstraction and Reasoning Corpus (ARC) challenge, aiming to create AI systems that can perform abstract reasoning tasks more efficiently than current approaches. His research explores the balance between computational efficiency and data efficiency in AI learning processes.

DO YOU WANT WORK ON ARC with the MindsAI team (current ARC winners)? MLST is sponsored by Tufa Labs: Focus: ARC, LLMs, test-time-compute, active inference, system2 reasoning, and more. Future plans: Expanding to complex environments like Warcraft 2 and Starcraft 2. Interested? Apply for an ML research position: benjamin@tufa.ai

TOC:

1. Intelligence Measurement in AI Systems

[00:00:00] 1.1 Defining Intelligence in AI Systems

[00:02:00] 1.2 Research at Santa Fe Institute

[00:04:35] 1.3 Impact of Gaming on AI Development

[00:05:10] 1.4 Comparing AI and Human Learning Efficiency

2. Efficient Skill Acquisition in AI

[00:06:40] 2.1 Intelligence as Skill Acquisition Efficiency

[00:08:25] 2.2 Limitations of Current AI Systems in Generalization

[00:09:45] 2.3 Human vs. AI Cognitive Processes

[00:10:40] 2.4 Measuring AI Intelligence: Chollet's ARC Challenge

3. Program Synthesis and ARC Challenge

[00:12:55] 3.1 Philosophical Foundations of Program Synthesis

[00:17:14] 3.2 Introduction to Program Induction and ARC Tasks

[00:18:49] 3.3 DreamCoder: Principles and Techniques

[00:27:55] 3.4 Trade-offs in Program Synthesis Search Strategies

[00:31:52] 3.5 Neural Networks and Bayesian Program Learning

4. Advanced Program Synthesis Techniques

[00:32:30] 4.1 DreamCoder and Dream Decompiling Approach

[00:39:00] 4.2 Beta Distribution and Caching in Program Synthesis

[00:45:10] 4.3 Performance and Limitations of Dream Decompiling

[00:47:45] 4.4 Alessandro's Approach to ARC Challenge

[00:51:12] 4.5 Conclusion and Future Discussions

Refs:

Full reflist on YT VD, Show Notes and MP3 metadata

Show Notes: https://www.dropbox.com/scl/fi/x50201tgqucj5ba2q4typ/Ale.pdf?rlkey=0ubvk7p5gtyx1gpownpdadim8&st=5pniu3nq&dl=0

  continue reading

213 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش