محتوای ارائه شده توسط Erik Partridge. تمام محتوای پادکست شامل قسمتها، گرافیکها و توضیحات پادکست مستقیماً توسط Erik Partridge یا شریک پلتفرم پادکست آنها آپلود و ارائه میشوند. اگر فکر میکنید شخصی بدون اجازه شما از اثر دارای حق نسخهبرداری شما استفاده میکند، میتوانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Squid Game is back—and this time, the knives are out. In the thrilling Season 3 premiere, Player 456 is spiraling and a brutal round of hide-and-seek forces players to kill or be killed. Hosts Phil Yu and Kiera Please break down Gi-hun’s descent into vengeance, Guard 011’s daring betrayal of the Game, and the shocking moment players are forced to choose between murdering their friends… or dying. Then, Carlos Juico and Gavin Ruta from the Jumpers Jump podcast join us to unpack their wild theories for the season. Plus, Phil and Kiera face off in a high-stakes round of “Hot Sweet Potato.” SPOILER ALERT! Make sure you watch Squid Game Season 3 Episode 1 before listening on. Play one last time. IG - @SquidGameNetflix X (f.k.a. Twitter) - @SquidGame Check out more from Phil Yu @angryasianman , Kiera Please @kieraplease and the Jumpers Jump podcast Listen to more from Netflix Podcasts . Squid Game: The Official Podcast is produced by Netflix and The Mash-Up Americans.…
محتوای ارائه شده توسط Erik Partridge. تمام محتوای پادکست شامل قسمتها، گرافیکها و توضیحات پادکست مستقیماً توسط Erik Partridge یا شریک پلتفرم پادکست آنها آپلود و ارائه میشوند. اگر فکر میکنید شخصی بدون اجازه شما از اثر دارای حق نسخهبرداری شما استفاده میکند، میتوانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Stratified sampling provides a mechanism by which to split a larger dataset into smaller pieces. While random approaches are commonly used, stratified sampling ensures a relatively consistent distribution. This can result in an unwanted loss of variance, but can also beneficially reduce variance. --- Send in a voice message: https://podcasters.spotify.com/pod/show/mlbytes/message
محتوای ارائه شده توسط Erik Partridge. تمام محتوای پادکست شامل قسمتها، گرافیکها و توضیحات پادکست مستقیماً توسط Erik Partridge یا شریک پلتفرم پادکست آنها آپلود و ارائه میشوند. اگر فکر میکنید شخصی بدون اجازه شما از اثر دارای حق نسخهبرداری شما استفاده میکند، میتوانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Stratified sampling provides a mechanism by which to split a larger dataset into smaller pieces. While random approaches are commonly used, stratified sampling ensures a relatively consistent distribution. This can result in an unwanted loss of variance, but can also beneficially reduce variance. --- Send in a voice message: https://podcasters.spotify.com/pod/show/mlbytes/message
K-fold cross validation is the practice by which we separate a large data set into smaller pieces, independently process each data set, and then train our models on some number of the segments, and validate it on the rest. This is generally considered a best practice, or at least good practice, in machine learning, as it helps ensure the correct characterization of your model on the validation set. Machine Learning Mastery has a great post on the topic . --- Send in a voice message: https://podcasters.spotify.com/pod/show/mlbytes/message…
Stratified sampling provides a mechanism by which to split a larger dataset into smaller pieces. While random approaches are commonly used, stratified sampling ensures a relatively consistent distribution. This can result in an unwanted loss of variance, but can also beneficially reduce variance. --- Send in a voice message: https://podcasters.spotify.com/pod/show/mlbytes/message…
Boosting is also an ensemble meta-algorithm, like boosting. However, in boosting we teach a large number of weak, but specialized learners, and combine them according to their strengths. For more information on boosting, consider watching the University of Washington's great lecture on the topic . --- Send in a voice message: https://podcasters.spotify.com/pod/show/mlbytes/message…
Bagging is an ensemble meta-algorithm. Basically, we take some number of estimators (usually dozens-ish), train them each on some random subset of the training data. Then, we average the predictions of each individual estimator in order to make the resulting prediction. While this reduces the variance of your predictions (indeed, that is the core purpose of bagging), it may come at the trade off of bias. For a more academic basis, see slide #13 of this lecture by Joëlle Pineau at McGill University. --- Send in a voice message: https://podcasters.spotify.com/pod/show/mlbytes/message…
The bias-variance trade-off is a key problem in your model search. While bias represents how well your model can capture the salient details of a problem, and generally correlates with more complex algorithms, it comes at the trade off of variance. Variance is the degree to which on individual predictions your estimators stray from the mean output on those values. High variance means that a model has overfit, and incorrectly or incompletely learned the problem from the training set. Most commonly, high bias = underfitting, high variance = overfitting. Please consider joining the conversation on Twitter . I also blog from time to time. You can find me at erikpartridge.com . For more academic sources, consider reading the slides from this fantastic Carnegie Mellon lecture . --- Send in a voice message: https://podcasters.spotify.com/pod/show/mlbytes/message…
The concept of empirical risk minimization drives modern approaches to training many machine learning algorithms, including deep neural networks. Today's thirty second summary covers the basics of what you need to know, but the concept goes well beyond just the simple case we discuss today. If you are looking to discuss the topic further, please consider joining the conversation on Twitter . Lecture notes from Carnegie Mellon University (no affiliation). --- Send in a voice message: https://podcasters.spotify.com/pod/show/mlbytes/message…
به Player FM خوش آمدید!
Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.
به بهترین برنامه ی پادکست جهان ملحق شوید تا نمایش های مورد علاقه ی خود را در برنامه های اندروید و iOS آنلاین مدیریت کنید و آفلاین پخش کنید. خیلی راحت و کاملا رایگان!